Volume-to-Volume Dilutions

Volume-to-volume dilutions describe the ratio of a solute to the final volume of the diluted solution. A majority of the time, antibody manufacturers suggest a certain starting dilution of antibody to use for a specific application. So if the manufacturer suggests a 1:2000 dilution of antibody for a western blot, this would mean 1 part of the stock antibody to 1999 parts of diluent (blocking buffer). The dilution factor is equal to the final volume divided by the initial volume. So for a 1:2000 dilution:
$\frac{2000}{1}=2000=$ dilution factor
If you need a final volume of 10 ml or 10,000 μ l of antibody diluted 1:2000 for your blot:
$\frac{\text { final volume you want }}{\text { dilution factor }}=$ volume of stock antibody to add to diluent
$\frac{10,000 \mu l}{2000}=5 \mu \mathrm{l}$
Then you would need to add $5 \mu l$ of antibody to $9,995 \mu l$ of diluent for a final volume of $10,000 \mu \mathrm{l}$ or 10 ml of diluted antibody.

$\mathbf{C 1 \times V 1 = \mathbf { C 2 } \times \mathrm { V } 2}$

The formula $C 1 \times V 1=C 2 \times V 2$ is useful for determining how to dilute an antibody or stock solution of a known concentration to a desired final concentration and desired volume.

In this formula $C 1$ is the concentration of the starting solution and $V 1$ is the volume of the starting solution, and $C 2$ is the concentration of the new solution and $V 2$ is the volume of the new solution.

So let's say you have an antibody stock at a concentration of $\frac{0.2 \mathrm{mg}}{\mathrm{ml}}$ OR $\frac{200 \mu \mathrm{~g} *}{\mathrm{ml}}$ and you need 20 ml of antibody diluted to a concentration of $\frac{0.04 \mu g *}{m l}$.
*When performing these calculations it is important to keep the units the same throughout the equation.
You know the starting concentration (C1) of the antibody stock provided in the vial and you know both the final concentration (C2) and final volume (V2) of solution that you want (in the case of diluting antibodies, the final solution would be in a diluent of blocking or staining buffer). We need to find $V 1$ which represents how much of the starting solution we need to add to the final volume of diluent($V 2$).

Rearranging the formula $C 1 \times V 1=C 2 \times V 2$ to solve for $V 1$:
$V 1=\frac{V 2 \times C 2}{C 1}$
$V 1=\frac{0.04 \frac{\mathrm{ug}}{\mathrm{ml}} \times 20 \mathrm{ml}}{200 \frac{\mathrm{\mu g}}{\mathrm{ml}}}$
$V 1=0.004 m l$

Converting 0.004 ml to $\mu l=0.004 \mathrm{ml} \times \frac{1000 \mu l}{m L}=4.0 \mu l$
So you need to take $4.0 \mu l$ of the original $\frac{200 \mu g}{m l}$ antibody solution and add it to $19,996 u l(19.996 \mathrm{ml})$ of diluent. The final 20 ml solution will represent a solution of $\frac{0.04 \mu \mathrm{~g}}{\mathrm{ml}}$ of antibody.

Now that we have diluted the antibody we can calculate what volume-to-volume dilution we actually performed (the dilution factor) because of the relationship $\frac{C 1}{C 2}=\frac{V 2}{V 1}$:
$\frac{V 2}{V 1}=$ dilution factor
$\frac{20,000}{2}=\frac{5,000}{1}=5,000$ dilution factor or 1:5,000 dilution
The dilution factor can also be calculated by dividing the concentration of the starting stock solution by the concentration of the new solution:
$\frac{C 1}{C 2}=$ dilution factor
$\frac{200 \mu \mathrm{~g} / \mathrm{ml}}{0.04 \mathrm{ug} / \mathrm{ml}}=5000$ dilution factor or $1: 5,000$ dilution

