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Foreword

We are pleased to introduce the latest edition of Cell Press Selections. These editorially curated
reprint collections highlight a particular area of life science by bringing together articles from the Cell
Press journals. In this selection, we present recent insights into chromatin immunoprecipitation (ChIP)
technologies.

Interactions between proteins and DNA are essential to life. These interactions mediate transcription,
DNA replication, recombination, and DNA repair, processes central to the biology of every organism.

To begin understanding the crosstalk between DNA and proteins, an early report in 1978 demonstrated
chromatin crosslinked with formaldehyde, preserving DNA-protein and protein-protein interactions
(Jackson, 1978, Cell). A few years later, the Lis and Varshavsky labs added an immunoprecipitation
step with specific histone antibodies to capture these protein-DNA complexes crosslinked via UV or
formaldehyde, moving this technology forward with their seminal publications describing ChIP (Lis,
1984, Proc. Natl. Acad. Sci. USA; Varshavsky, 1988, Cell). Following these pioneering reports, ChIP
has been extensively developed and refined, with improved variations on this methodology continually
arising.

We hope that you will enjoy reading this collection of articles and will visit www.cell.com to find other
high-quality research and review articles touting the uses of ChIP technology.

Finally, we are grateful for the generosity of Bethyl Laboratories, who helped to make this reprint
collection possible.

For more information about Cell Press Selections:
Gordon Sheffield

Program Director, Cell Press Selections
g.sheffield@cell.com

617-386-2189
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SUMMARY

JARID2 is an accessory component of Polycomb
repressive complex-2 (PRC2) required for the dif-
ferentiation of embryonic stem cells (ESCs). A role
for JARID2 in the recruitment of PRC2 to target
genes silenced during differentiation has been put
forward, but the molecular details remain unclear.
We identified a 30-amino-acid region of JARID2
that mediates interactions with long noncoding
RNAs (IncRNAs) and found that the presence
of IncRNAs stimulated JARID2-EZH2 interactions
in vitro and JARID2-mediated recruitment of PRC2
to chromatin in vivo. Native and crosslinked RNA
immunoprecipitations of JARID2 revealed that
Meg3 and other IncRNAs from the imprinted DIk1-
Dio3 locus, an important regulator of development,
interacted with PRC2 via JARID2. Lack of MEG3 ex-
pression in human induced pluripotent cells altered
the chromatin distribution of JARID2, PRC2, and
H3K27me3. Our findings show that IncRNAs facili-
tate JARID2-PRC2 interactions on chromatin and
suggest a mechanism by which IncRNAs contribute
to PRC2 recruitment.

INTRODUCTION

Polycomb group (PcG) genes are key epigenetic regulators in
multicellular organisms, as they maintain transcriptional repres-
sion of lineage-specific genes throughout development, thus
contributing to the stability of cell identity (Schwartz and Pirrotta,
2007). Al mammalian PcG protein complexes identified so far
perform their epigenetic function by acting on chromatin (Lan-
zuolo and Orlando, 2012); in particular, the Polycomb repressive
complex 2 (PRC2) is responsible for di- and trimethylation of
lysine 27 in histone H3 (H3K27me2/3) (Margueron and Reinberg,
2011), a hallmark of facultative heterochromatin (Trojer and
Reinberg, 2007).

290 Molecular Cell 53, 290-300, January 23, 2014 ©2014 Elsevier Inc.

One of the outstanding questions regarding mammalian PRC2
function is that of specificity of action: how are certain genes
selected for repression while others are unaffected? How can
the same molecular machinery silence different genes in dif-
ferent cell lineages? Because none of the core components of
PRC2 (EZH2, EED, SUZ12, RBBP4/7) possess a DNA binding
domain (Margueron and Reinberg, 2011), it is believed that chro-
matin targeting must be specified elsewhere, by interactions
with DNA-binding factors (Boulay et al., 2012; Kim et al., 2009),
preexisting histone methylation (Margueron et al., 2009), chro-
matin-associated long noncoding RNAs (IncRNAs) (Rinn et al.,
2007; Tsai et al., 2010), or a combination thereof (Margueron
and Reinberg, 2011).

One essential factor for proper recruitment of PRC2 during the
early phases of embryonic stem cell (ESC) differentiation is the
Jumoniji family, ARID domain-containing protein JARID2 (Land-
eira et al., 2010; Li et al., 2010; Pasini et al., 2010; Peng et al.,
2009; Shen et al., 2009), which is often deleted in chronic
myeloid malignancies (Puda et al., 2012). In the absence of
JARID2, PRC2 is recruited late and incompletely to its target
genes and its enzymatic function is diminished (Li et al., 2010;
Son et al., 2013), which results in failure to follow the differentia-
tion program. Although JARID2 target sites are enriched for
CGG- and GA-containing sequences (Peng et al., 2009), its
DNA binding preferences lack the specificity to explain its distri-
bution on chromatin (Li et al., 2010). Therefore, the nature of the
recruitment pathway for JARID2 and the mode by which JARID2
regulates downstream steps of PRC2 assembly and function
remain unclear.

Noncoding RNAs have been implicated in the regulation of
epigenetic pathways, from early work on the IncRNA Xist in
X chromosome inactivation (Brockdorff et al., 1992; Brown
et al., 1992) and antisense transcripts in imprinted loci (John
and Surani, 1996) to the more recent discovery of HOTAIR
(Rinn et al., 2007) and its proposed role as a scaffold for chro-
matin-modifying “supercomplexes” (Tsai et al., 2010). Mamma-
lian genomes contain thousands of IncRNAs (Guttman et al.,
2009), most of which remain functionally uncharacterized.
Because of their large size, potential for tertiary structure forma-
tion, and ability to form sequence-specific interactions with DNA,
IncRNAs appear well suited to exchange information between
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Figure 1. Identification of the RNA-Binding
Region of JARID2

(A) Domain organization of human JARID2 and
scheme of the 6xHis-fused truncations utilized in
the mapping experiments.
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chromatin-modifying complexes and the genomic sequence
(Bonasio et al., 2010; Rinn and Chang, 2012). Polycomb repres-
sive complex-1 (PRC1), PRC2, and the MLL complex interact
with the IncRNAs ANRIL, HOTAIR, and HOTTIP, respectively,
and these interactions facilitate their recruitment to chromatin
(Rinn et al., 2007; Wang et al., 2011; Yap et al., 2010). How-
ever, the molecular details and downstream consequences of
these RNA-protein interactions remain poorly understood. For
example, the RNA-binding activity of PRC2 has been attributed
to both EZH2 (Kaneko et al., 2010; Zhao et al., 2010) and
SUZ12 (Kanhere et al., 2010), and, in unbiased analyses, large
portions of the transcriptome were reported to bind to PRC2
(Kaneko et al., 2013; Khalil et al., 2009; Zhao et al., 2010), raising
the question of how specificity is achieved in vivo.

Here, we show that the PRC2 accessory subunit JARID2 binds
to IncRNAs in vivo and in vitro and that its interaction with MEGS3,
an IncRNA encoded by the imprinted DLK7-DIO3 locus, is
necessary for proper recruitment and assembly of PRC2 at a
subset of target genes in pluripotent stem cells.

RESULTS
JARID2 Binds to RNA In Vitro

Despite a requirement for JARID2 during development (Takeuchi
et al., 1995) and its key role in PRC2 recruitment and function

o

two indicated fragments (right) were incubated
with HOTAIR1_333 and assayed as in (B). Input,
2 ug; titration, 1, 2, and 4 pg.

See also Figure S1.

| E—

during differentiation of mouse ESCs (Li
et al., 2010; Pasini et al., 2010; Peng
et al., 2009; Shen et al., 2009), the mech-
anisms by which JARID2 is targeted to
chromatin and orchestrates PRC2 func-
tion remain poorly understood. Given
that several PcG and PcG-associated
proteins interact with IncRNAs, which in
some cases regulate their recruitment to
chromatin (Kanhere et al., 2010; Rinn
et al., 2007; Yap et al., 2010), and based
on our own preliminary observations
450 in vitro (Kaneko et al., 2010), we hypothe-
sized that IncRNAs might also regulate
the function of JARID2.

We previously mapped an RNA-bind-
ing region (RBR) of EZH2, a core compo-
nent of PRC2, and found that phosphorylation of a threonine
within that region stimulated binding to IncRNAs (Kaneko
et al., 2010). We performed similar in vitro RNA-binding
assays on JARID2 using a bait spanning nucleotides 1-333 of
HOTAIR, a IncRNA that regulates PRC2 function (Tsai et al.,
2010), and detected an affinity for RNA within an internal frag-
ment of JARID2, but not in the N-terminal or C-terminal regions
(Figures 1A and 1B). Further mapping experiments revealed
that the deletion of residues 332-358 resulted in a severe
decrease of RNA binding in vitro (Figure 1C; Figures S1A and
S1B available online). The sequence spanning these residues
is conserved strongly in vertebrates (Figure S1C), but only
very weakly with Drosophila (Figure S1D), suggesting that
JARID2 may have acquired an additional layer of regulation in
vertebrates.

JARID2 binds to EZH2, the catalytic component of PRC2 (Mar-
gueron and Reinberg, 2011) and stimulates its histone methyl-
transferase activity (Li et al., 2010; Son et al., 2013). These
functions require the same internal fragment that contains the
RBR (Figure S1E) but can be uncoupled from the latter, given
that deletion of residues 332-358 did not affect the ability of
JARID2 to interact with PRC2 in vivo (Figure S1F) or to stimulate
its enzymatic activity (Figure S1G), whereas the 349-574 frag-
ment did not bind to RNA (Figure S1A) but retained the ability
to interact with nucleosomes (Figure S1E) (Son et al., 2013).

450
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Therefore, although partially overlapping regions of JARID2 are
required for these various functions, the only activity that we
could uniquely attribute to the 332-358 fragment is that of bind-
ing RNA in vitro. Henceforth, we will refer to these residues as the
RBR of JARID2 and to the mutant protein lacking these residues
as JARID2,rgR.

JARID2 and EZH2 Bind to IncRNAs In Vivo,

Including Meg3

To determine whether JARID2 makes direct contacts with
RNA in vivo, we utilized the photoactivatable-ribonucleoside-
enhanced crosslinking and immunoprecipitation (PAR-CLIP)
technique, which crosslinks RNA that has incorporated 4-thiour-
idine (4-SU) to proteins in vivo (Hafner et al., 2010). Consistent
with our hypothesis, we detected a strong PAR-CLIP signal in
immunoprecipitations (IPs) with our JARID2 antibody (Li et al.,
2010) in extracts from embryonic day 14 (E14) ESCs (Figure 2A).
These IPs were conducted in presence of 2% lauryldimethylbe-
taine, a zwitterionic detergent that almost completely abolished
the PRC2-JARID2 interaction while preserving antibody reac-
tivity (Figure 2B). Furthermore, the radioactive signal we ob-
served must have originated from RNA crosslinked to JARID2,
because it was dependent on the incorporation of 4-SU and
was erased by treatment with increasing concentrations of
RNase and by Jarid2 knockdown (Figure 2C).

To identify the RNAs bound to JARID2 in vivo, we excised **P-
labeled bands from the PAR-CLIP membranes (Figure 2D),
eluted the crosslinked RNA, and sequenced it. In addition to
the major, full-length band, we excised a faster migrating band
that also reacted with JARID2 antibodies in WT but not in
Jarid2~'~ cells (data not shown). We obtained 90,000-200,000
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Figure 2. JARID2 and EZH2 Share Interact-
ing IncRNAs In Vivo, Including Meg3

(A) PAR-CLIP with JARID2 antibodies or IgG in E14
ESC cells. The position of full-length JARID2 is
indicated. The asterisk marks a presumed degra-
dation product.

(B) Immunoblot on the same material utilized for the
autoradiography in (A). J2, anti-JARID2 antibody.

(C) PAR-CLIP (top) and immunoblot for JARID2
(bottom) performed in cells pulsed (+) or not
pulsed (—) with 4-SU and stably transfected with
an shRNA against Jarid2 or a control shRNA.
Extracts were treated with increasing concentra-
tion of a cocktail of DNase-free RNase A and T1.
(D) PAR-CLIP-seq blot for JARID2.

(E) Distribution of JARID2 RCSs identified by
PARalyzer in the genome. The stacked columns
represent % of total RCSs. “Repeats” include all
features listed in the RepMask database.

(F) Venn diagram of IncRNAs containing RCSs for
JARID2, EZH2, or both. PAR-CLIP data for EZH2
were taken from GSE49433 (Kaneko et al., 2013).
(G) Genome browser view of JARID2 and EZH2
CLIP tags (black bars) or RCSs identified by
PARalyzer (red bars) mapping to the Meg3
IncRNA. Gene models for Meg3 according to both
TROMER and ENSEMBL are shown. Meg3 frag-
ments tested for in vitro binding are indicated at
the bottom.

See also Figure S2 and Table S1.

unique CLIP tags in each replicate and analyzed their distribu-
tion using the PARalyzer software, which takes advantage of
the T—C transitions caused by 4-SU crosslinking to discrimi-
nate signal from noise (Corcoran et al., 2011). PARalyzer identi-
fied 9,050 putative RNA-protein contact sites (RCSs) for JARID2,
of which ~26% overlapped by more than 50% with repeats (Fig-
ure 2E) and were discarded. Among the 2,057 IncRNAs anno-
tated in the mouse genome (ENSEMBL release 67), we identified
106 that contained at least one nonrepetitive RCS for JARID2
(Table S1). This bioinformatic pipeline applied to our previously
generated EZH2 PAR-CLIP data (Kaneko et al., 2013) revealed
that, in the same ESCs, EZH2 interacted with 165 IncRNAs, of
which 53 were in common with JARID2 (Figure 2F; Table S1),
including Meg3/Gtl2, Rian, and Mirg, three IncRNAs encoded
within the imprinted DIk7-Dio3 locus.

We focused our attention on the INcRNA Meg3 (also known as
Gtl2), because of previous reports linking it to pluripotency
(Stadtfeld et al., 2010), imprinting (da Rocha et al., 2008), and
PRC2 function (Zhao et al., 2010). Consistent with our
PARalyzer analysis, several tags and RCSs from both JARID2
and EZH2 PAR-CLIP data mapped to Meg3 (Figure 2G).
Although some of the JARID2 CLIP tags mapped to a 5 region
annotated as an intron by ENSEMBL (red track), the existence of
an exon in this region is supported by the TROMER database
(Benson et al., 2004) (green track), and our own RNA-seq
(data not shown). Another cluster of JARID2 CLIP tags mapped
to the 3’ exon and accumulated in a region where PARalyzer
identified an RCS (Figure 2G). Few CLIP tags mapped to highly
expressed genes such as Nanog (Figure S2A) or Gapdh (Fig-
ure S2B), suggesting that the presence of Meg3 tags reflected
direct interactions in vivo.

292 Molecular Cell 53, 290-300, January 23, 2014 ©2014 Elsevier Inc.
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The RBR of JARID2 Contributes to Meg3 Binding In Vitro
and In Vivo

Having identified Meg3 as a JARID2-interacting IncRNA by CLIP,
we next tested this interaction in vitro. We performed pull-down
assays with in vitro-transcribed fragments of Meg3 (Figure 2G,
bottom) obtained from a previously generated clone (Zhao
et al., 2010). Although all tested fragments bound to a recombi-
nant JARID2 fragment spanning the RBR (Figure 3A), the interac-
tion was stronger for fragments originating from the 3’ end of the
clone (Figure 3B), including one (fragment “K”) that spanned the
only RCS identified in this region (Figure 2G). We analyzed struc-
tural predictions for these fragments but found no obvious sim-
ilarities among those that bound with higher affinity, except a
trend for less stable structures (Figure S3). Importantly, a JARID2
fragment lacking the RBR displayed a pronounced reduction in
binding affinity, at least toward the Meg3 fragment tested (frag-
ment “F”; Figures 3A and 3B).

To validate these JARID2-RNA interactions with a technique
more quantitative than PAR-CLIP, we resorted to native RNA
immunoprecipitations (RIPs) followed by quantitative PCR
(9PCR). Consistent with our PAR-CLIP results and previous re-
ports (Zhao et al., 2010), Meg3 was enriched in PRC2 RIPs per-

Figure 3. The JARID2 RBR Mediates Inter-
actions of Meg3 with PRC2

(A) In vitro pull-down assay with different frag-
ments of Meg3 using 4 ng of GST-JARID2 119-450
WT or ARBR.

(B) Quantification of bands shown in (A).

(C) RIPs for EZH2 were performed in E14 ESCs
stably transfected with an shRNA against Jarid2
(KD) or empty vector (ctrl). Coprecipitated proteins
were revealed by western blot. The 10% input and
IgG lanes are shown as controls.

(D) gRT-PCR on EZH2 RIPs from control E14 ESCs
(white bars) or Jarid2 knockdown E14 ESCs (black
bars). Data are shown as percentage of RIP input.
Bars represent the mean of four replicates + SD.
(E and F) As in (C) and (D) but Ezh2 was knocked
down and the RIP were performed with JARID2
antibodies.

(G) Western blots for HA RIPs from nuclear ex-
tracts of KH2 transiently transfected with N3-
tagged EZH2, EZH2,pgr (top), JARID2, and
JARID2,Rrpr (bottom). I, input; IP, HA immuno-
precipitation; FT, flow-through.

(H) gRT-PCR normalized to Gapdh levels on HA
RIPs described in (E). Bars indicate the mean of
three biological replicates + SEM. *p < 0.05 by
Mann-Whitney U test.

See also Figures S3 and S4.

formed with EZH2 antibodies, and so
were two other IncRNAs encoded within
the same imprinted locus, Rian and Mirg
(Figures 3C and 3D). However, when
we depleted JARID2 by small hairpin
RNA (shRNA)-mediated knockdown, we
observed a considerable decrease in the
amounts of these INncRNAs coprecipitat-
ing with PRC2 (Figures 3C and 3D), and
similar results were obtained with SUZ12 antibodies (Figures
S4A and S4B). Importantly, knockdown of Ezh2 did not affect
the ability of JARID2 to bind to Meg3, Rian, or Mirg (Figures 3E
and 3F), suggesting that the JARID2-Meg3 interaction makes
the largest contribution to the affinity of Meg3 for PRC2.

We then asked whether Meg3 bound to JARID2 via the RBR.
To this end, we transiently expressed in mouse ESCs hemagglu-
tinin (HA)-tagged EZH2, EZH2 lacking the previously identified
RBR (EZH2,RrgR) (Kaneko et al., 2010), JARID2, and JARID2 zrgr
and performed HA RIPs followed by quantitative RT-PCRs (QRT-
PCRs). Consistent with the results presented above, the interac-
tion of Meg3 with JARID2 was significantly decreased when its
RBR was removed, whereas EZH2 and EZH2,rgr coprecipi-
tated Meg3 with equal efficiencies (Figures 3G and 3H). We
detected a similar trend for Rian, although in that case the differ-
ence did not reach statistical significance (Figure 3H). Similarly,
human JARID2, but not human JARID2,rpgr, bound to Meg3 in
mouse ESCs (Figures S4C and S4D).

These data supported the conclusion that Meg3 interacts
with PRC2 mainly through the RBR of JARID2, which led us to
speculate that this IncRNA may participate in the function of
JARID2 on chromatin.

Molecular Cell 53, 290-300, January 23, 2014 ©2014 Elsevier Inc. 293



MEGS3 Regulates PRC2 Occupancy In Trans

In light of the connection between MEG3 and pluripotency
(Stadtfeld et al., 2010), we turned our attention to a set of eight
human induced pluripotent stem cell (hiPSC) lines that differ
greatly in their levels of MEG3 expression (Nishino et al., 2011),
thus offering a natural experimental system in which to study
the effects of MEG3 on PRC2 function. We classified these lines
into 5 MEG3" and 3 MEG3~ (Figures S5A and S5B) and
confirmed that EZH2, SUZ12, and JARID2 were expressed at
similar levels in MEG3* and MEG3~ lines (Figures S5C-S5E).
Importantly, pluripotent markers OCT3/4 and NANOG were
also expressed at comparable levels in all lines and at much
higher levels than in differentiated cells, such as foreskin fibro-
blasts (Figures S5F and S5G).

Next, we performed chromatin immunoprecipitation (ChlIP) fol-
lowed by deep sequencing (ChlP-seq) for JARID2, EZH2, and
H3K27me3, the product of PRC2 catalysis. We identified
enriched regions (ERs) for all three features and compared
normalized read densities in MEG3" versus MEG3~ cells. The
genome-wide analysis revealed 29, 89, and 268 differentially
bound regions (DBRs) with a false discovery rate (FDR) < 0.1 in
MEGS3"* versus MEG3~ cells for JARID2, EZH2, and H3K27me3,
respectively (Figures 4A-4C). At most of these MEG3-dependent
DBRs, PRC2 exhibited stronger binding in the hiPSC lines that ex-
pressed MEG3, suggesting that the INcRNA had a stimulatory
function (Figures 4A-4C; Figures S6A-S6C). Genes near the
MEG3-dependent DBRs were enriched for functional terms
related to the regulation of transcription during embryonic devel-
opment and differentiation (Table S2), even taking into account
the enrichment of developmental and transcription-related terms

Molecular Cell
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Figure 4. Decreased Occupancy of PRC2 at
Some Chromatin Targets in MEG3™ Cells
(A-C) MA plots for JARID2 (A), EZH2 (B), and
H3K27me3 (C) occupancy, as determined by the
normalized and input-corrected read densities in
MEG3* (above dotted line) versus MEG3~ (below
dotted line) hiPSC lines. Each dot represents an
ER in common between at least two hiPSC lines.
DBRs with an FDR < 0.1 are displayed in red.

(D) Venn diagram for DBRs with FDR < 0.1.

(E) qRT-PCR analysis of PRC2 targets in MEG3*
and MEG3~ hiPSCs. Bars represent the mean
RNA abundance (as percentage of GAPDH) in the
five MEG3* and three MEG3~ lines tested. *p <
0.05, as calculated by Mann-Whitney U test.

(F) qRT-PCR for Meg3 24 hr after transfection of
KH2 ESCs with control (white bar) or Meg3
siRNAs.

(G and H) ChIP-gPCR for JARID2 (G) or EZH2 (H)
with primers mapping to PRC2 peaks near the
indicated genes in KH2 ESCs treated with control
(white bars) or Meg3 (black bars) siRNAs. Bars
represent the mean of three replicates + SEM. *p <
0.05 by Mann-Whitney U test.

See also Figures S5-S7 and Tables S2 and S3.

in the background population comprising
all JARID2, EZH2, and H3K27me3 ERs
(Table S3).

Of the 29 MEG3-dependent DBRs for JARID2, 21 overlapped
with EZH2 DBRs (Figure 4D), and of these 16 also overlapped
with H3K27me3 DBRs, a fraction much larger than expected
by chance alone (p value < 1072°, hypergeometric distribution).
Among the regions with lower JARID2 occupancy in the absence
of MEG3 were the loci encoding the transcription factors ZIC5,
NR4A2, ZIC2, and PITX, as well as the neuronal gene PCDHGC5
(Figure S6D and data not shown), all of which function in differen-
tiating or differentiated cells and must therefore be silenced in
pluripotent stem cells. In all loci tested, the MEG3-dependent
loss of PRC2 targeting resulted in transcriptional derepression
(Figure 4E).

It has been suggested that, in mouse ESCs, Meg3 exerts a cis-
repressive effect on the adjacent DIk gene by recruiting PRC2
(Zhao et al., 2010). To determine whether a similar mechanism
was conserved in hiPSCs, we analyzed the DLK1 promoter in
MEG3* versus MEG3~ hiPSCs. Unexpectedly, we observed no
differences in JARID2 or PRC2 occupancy (data not shown)
and no evidence of a reciprocal correlation in the levels of
MEG3 and DLK1 RNA in these cells (Figure S5H) or with the
protein-coding RNA at the other extremity of the imprinted locus,
DIO3 (Figure S5J).

Because the DLK7-DIO3 locus encodes multiple ncRNAs
(MEGS3, RIAN, and MIRG), all repressed in MEG3~ hiPSCs, we
examined the effect of altering MEG3 levels alone on PRC2 local-
ization. We overexpressed MEG3 (or GFP RNA as a control) in
MEG3~ hiPSCs and analyzed the distribution of JARID2 and
EZH2 by ChIP-seq. A caveat of this experiment is that MEG3
was expressed at levels ~10 times higher than in the average
MEG3" line (Figure S7A); nonetheless, we observed increased
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densities of JARID2 at some MEG3-dependent DBRs, but not
at control targets (Figure S7B). However, we did not detect re-
covery of JARID2 occupancy at all JARID2 DBRs (Figure S7C),
suggesting that the regulation afforded by endogenous MEG3
could not be fully recapitulated by providing large amounts of
the IncRNA in trans. Interestingly, PRC2 was preferentially
depleted from the EZH2 DBRs upon overexpression of MEG3
(Figure S7D). Although this depletion of EZH2 was unexpected,
the fact that the EZH2 DBRs were preferentially depleted by
the manipulation of MEGS3 levels is consistent with the idea
that occupancy at these sites is selectively regulated by this
IncRNA.

To further verify that the observed changes in PRC2 occu-
pancy were directly related to the changes in MEGS levels, we
performed transient knockdown of the orthologous IncRNA
in mouse ESCs. Despite only partial knockdown efficiency
(~50%; Figure 4F), six out of nine DBRs tested lost JARID2
and EZH2 after Meg3 depletion (Figures 4G and 4H), suggesting
that the regulation of PRC2 by Meg3 is conserved between
human and mouse. PRC2 occupancy at Plek2, Mbni3, and
Cdx4 was not affected by Meg3 knockdown (data not shown),
despite the fact that orthologous loci were among the MEG3-
dependent DBRs in hiPSCs. However, it is not surprising that
subtle differences in gene regulation would exist across this spe-
cies barrier, especially given that mouse and human stem cells
are not equivalent (Ginis et al., 2004).

Together, our ChIP experiments in hiPSCs and mouse ESCs
support the conclusion that MEG3 acts in trans on PRC2 and
JARID2 by facilitating their recruitment to a subset of target
genes.

RNA Facilitates JARID2-PRC2 Interactions

Given that loss of MEGS3 caused defects in PRC2 recruitment
and that several IncRNAs crosslinked to both JARID2 and
EZH2 in vivo, we hypothesized that RNA-mediated scaffolding

smaller 5 truncation of HOTAIR (D), a microRNA
(E), or double-stranded DNA (F). Pull down was
performed with anti-FLAG beads and proteins
stained with Coomassie blue.

(G) Same as (C)—(F) using Meg3 fragments.

could stabilize JARID2-PRC2 interactions. To test this hypothe-
sis in vitro, we first examined the IncRNA HOTAIR, which func-
tions as a scaffold between the LSD1/CoREST/REST complex
and PRC2 (Tsai et al., 2010). Low amounts of HOTAIR stimulated
the interaction between recombinant EZH2 and JARID2 frag-
ments in vitro (Figures 5A and 5B, compare lanes 1-3), whereas
higher concentrations of the RNA resulted in a return to baseline
interaction levels, suggesting the possibility of squelching (Fig-
ures 5A and 5B, compare lanes 3-5). This stimulation was
considerably reduced for JARID2 fragments that lacked the
RBR (Figures 5A and 5B, lanes 6-10) but retained the ability to
interact with EZH2 (Figure 5A, compare lanes 1 and 6) or when
we replaced the HOTAIR IncRNA fragment with a shorter
version, a control pre-microRNA that forms two stem-loops, or
double-stranded DNA containing the HOTAIR IncRNA sequence
(Figures 5C-5F). Stimulation of binding was also observed when
we incubated recombinant EZH2 and JARID2 with those Meg3
fragments that displayed maximum affinity in the in vitro pull-
down assay (Figure 5G). Therefore, stimulation of JARID2-
EZH2 interactions may be a general mechanism of action for
IncRNAs that bind to these proteins.

The JARID2 RBR Stimulates PRC2 Assembly on
Chromatin

Having discovered that IncRNAs stimulate JARID2-PRC2 inter-
actions in vivo (Figure 4) and in vitro (Figure 5) and knowing that
the RBR was required for the latter (Figures 5A and 5B), we asked
whether it was also required for the former. To this end, we over-
expressed JARID2 or JARID2,rgr in human foreskin fibroblasts,
which express high levels of HOTAIR (Rinn et al., 2007), and
measured its accumulation at known genomic targets by ChIP-
gPCR. Wild-type (WT) and mutant JARID2 were expressed at
comparable levelsinlentivirally transduced fibroblasts (Figure 6A,
top) and did not affect EZH2 levels (Figure 6A, middle). Upon
JARID2 overexpression, we observed increased accumulation
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Figure 6. JARID2 Recruits EZH2 to Chromatin in an RBR-Dependent
Manner

(A) Western blots for foreskin fibroblasts transduced with lentiviruses ex-
pressing JARID2, JARID2,rgr, Of mock transduced.

(B and C) ChIP-gPCR with antibodies against JARID2 (B) or EZH2 (C) at known
PRC2 chromatin targets in foreskin fibroblasts transduced as in (A). Several
primer sets are shown for HOXD8. The primers for MYT1 were designed at a
distal location, devoid of PRC2, and serve as a negative control. The ChIP
enrichment is normalized against that obtained with the same antibodies in
mock-transfected control cells (dotted line). Bars represent mean of four
technical replicates + SD (B) or three biological replicates + SEM (C). *p < 0.05
by Mann-Whitney U test.

of the protein at known chromatin targets, such as HOXD8 and
GATA2, compared with controls (Figure 6B). JARID2,,rgr accu-
mulated at these targets with the same efficiency as the WT pro-
tein but, unlike the WT, it was incapable to recruit additional
EZH2, which remained at the same levels as observed in the
mock-transfected cells (Figure 6C). Given that these targets
were already silent in the mock-transfected controls, we did not
attempt to detect further repression at the transcriptional level.

These results suggest that RNA-protein interactions via the
JARID2 RBR contribute to the recruitment and assembly of
PRC2 on chromatin. Interestingly, depletion of HOTAIR in fore-
skin fibroblasts also impairs PRC2 recruitment at these loci
(Rinn et al., 2007; Tsai et al., 2010), suggesting that it may act
through interactions with the JARID2 RBR.

The fact that JARID2,Rrgr is incapable of recruiting EZH2 to
target sites is compatible with a model by which IncRNAs modu-
late JARID2-PRC2 interactions and orchestrate the distribution
and activity of PRC2 on chromatin.

DISCUSSION

The results presented above allow us to add JARID2 to the
growing list of chromatin-associated proteins that interact with
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IncRNAs and offer further support to the hypothesis that
IncRNAs are a component of the Polycomb axis in mammals.

We mapped the JARID2 RBR to an N-terminal fragment that
contains no annotated features or domains, despite the fact
that, in addition to RNA binding, it is also responsible for interac-
tions with SUZ12, EZH2, nucleosomes, and PRC2 stimulation
(Kim et al., 2003; Li et al., 2010; Pasini et al., 2010; Son et al.,
2013). Although we assigned these biochemical activities to
distinct protein fragments (Figure S1), they do map to adjacent
regions, and it is tempting to speculate that this vicinity might
reflect a functional crosstalk, by which, for example, RNA bind-
ing could stimulate nucleosomal binding and contribute to
PRC2 regulation.

Among the IncRNAs identified by PAR-CLIP, we focused our
functional analysis on Meg3 because of its connections with
ESC pluripotency, imprinting, and PRC2 function (da Rocha
et al., 2008; Stadtfeld et al., 2010; Zhao et al., 2010). We demon-
strated JARID2-Meg3 interactions using RIP-gPCR, PAR-CLIP,
and in vitro pull-down assays. Importantly, we also found RCSs
for EZH2 within Meg3 in our previously published EZH2 PAR-
CLIP data set (Kaneko et al., 2013) (Figures 2F and 2G). This is
consistent with earlier results obtained by native and UV-cross-
linked RIP (Zhao et al., 2010) and supports a model by which
Meg3 contacts both JARID2 and EZH2 and stimulates their
interaction. Without JARID2 the interaction between Meg3 and
PRC2 is much weaker (Figure 3D), suggesting that of the two
contact points, the one on JARID2 makes the larger contribution
to the affinity for Meg3. We note that by using Ezh2 '~ cells as a
control, Zhao et al. could not have detected this requirement for
JARID2, because in absence of EZH2 the IP performed with an
anti-EZH2 antibody would not have recovered JARID2.

We envision a model in which some IncRNAs function as scaf-
fold to stimulate assembly of PRC2 at JARID2 target sites (Fig-
ure 7A). In addition, the existence of DBRs that lose JARID2
occupancy in absence of MEG3 (Figure 4A) suggests that, at
certain sites, IncRNAs might also be required for the initial recruit-
ment of JARID2 (Figure 7B). In both scenarios, the net result of
IncRNA action is to increase PRC2 occupancy and H3K27me3
deposition (Figures 7A and 7B). We have demonstrated this
model using MEG3 and genomic targets in hiPSCs and mouse
ESCs (Figure 4); however, the recovery of other IncRNAs cross-
linked to both JARID2 and EZH2 by PAR-CLIP-seq (Figure 2F;
Table S1) allows us to speculate that this mode of action might
not be limited to MEGS. In fact, the JARID2,grgr mutant does
not recruit PRC2 to the HOX locus in foreskin fibroblasts, despite
the fact that this locus is not MEG3 dependent. We propose that
other IncRNAs function as scaffold for JARID2-PRC2 interac-
tions in this setting and we note that foreskin fibroblasts express
high levels of HOTAIR (Rinn et al., 2007), which is also able to
stimulate JARID2-EZH2 interactions in vitro (Figure 5).

Not all IncRNAs bind equally to JARID2 and EZH2. Our reanal-
ysis of EZH2 PAR-CLIP tags (Kaneko et al., 2013) identified a
number of INcRNAs not shared with JARID2 (Figure 2F; Table
S1) that, likely, regulate PRC2 function in JARID2-independent
ways. In addition to IncRNAs, EZH2 binds to a variety of coding
transcripts in vivo and in vitro with high affinity but seemingly
low specificity (Davidovich et al., 2013; Kaneko et al., 2013).
Those interactions appear to constitute a distinct regulatory
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Figure 7. Proposed Model for the Interplay of IncRNAs, JARID2,
and PRC2

(A) At some target genes, the presence of JARID2 by itself (1) is not sufficient for
maximum PRC2 recruitment, which requires scaffolding by IncRNAs (Il). The
presence of both JARID2 and IncRNAs stimulates further recruitment and
assembly of PRC2 on chromatin, resulting in increased H3K27me3 (lll). The
structure of IncRNAs bound to JARID2 (and PRC2) remains to be elucidated,
and the one shown here is only for the purpose of illustration.

(B) In some cases, IncRNAs might contribute to the initial recruitment of
JARID2 to chromatin (). Because JARID2 also binds PRC2 via protein-
protein interactions, this results in increased PRC2 recruitment and H3K27
methylation (Il).

mechanism from the one described here, as they occur mostly at
promoters of transcribed genes, which have low PRC2 occu-
pancy (Davidovich et al., 2013; Kaneko et al., 2013) and are
largely devoid of JARID2 (data not shown). However, we cannot
exclude that nascent RNAs could compete with IncRNAs for
binding to EZH2, which might help explain their apparent inhibi-
tory function.

Our gain-of-function experiments in hiPSCs confirmed that at
least some JARID2 DBRs identified in MEG3* versus MEG3™
hiPSCs can be rescued by supplying MEG3 IncRNA in trans to
otherwise MEG3-negative hiPSCs (Figure S7B). The ectopic
expression of MEG3 IncRNAs caused EZH2 depletion rather
than increased occupancy at the previously identified MEG3-
dependent DBRs (Figure S7D), which was in contrast to our
expectations. However, considering that lentiviral transduction
resulted in 10-fold higher MEG3 levels compared to endogenous
MEGS3 (Figure S7A), we speculate that such an excess of
RNA molecules acted in a dominant negative fashion through
squelching, as seen in vitro (Figure 5). It is also possible that
the random integration of the lentivirally encoded MEG3 at
ectopical sites within the genome may explain its unphysiologi-
cal behavior in these experiments, given that the genomic
location of IncRNA genes appears to play a pivotal role in their
function (Ulitsky et al., 2011). Nonetheless, the fact that MEG3-
dependent DBRs were selectively affected confirmed that occu-

pancy at these targets is indeed regulated by MEG3, which was
further supported by the results of transient Meg3 knockdown in
mouse ESCs (Figures 4G and 4H).

Genomic imprinting of MEG3 is unstable in human ESCs, and
several hiPSC lines, regardless of their parental cell type, main-
tain repression at this locus even after continuous passaging
(Nishino et al., 2011). This is likely mediated by aberrant DNA
hypermethylation (Nishino et al., 2011) (data not shown). There-
fore, it is possible that current reprogramming protocols fail to
set the appropriate epigenetic state at the DLK7-DIO3 locus,
which is an important consideration given that improper regula-
tion of this imprinted regions leads to developmental abnormal-
ities in mice (Stadtfeld et al., 2010; Takahashi et al., 2009) and
humans (Kagami et al., 2008). The mechanistic details of the
epigenetic alteration at this imprinted locus during reprogram-
ming remains elusive, but our data suggest that MEG3 interac-
tions with PRC2 might play an important role.

Although our findings suggest a molecular mechanism by
which MEGS3 contributes to JARID2 and PRC2 function, further
investigations are required to address (1) whether and how this
mechanism extends to the other IncRNAs identified by PAR-
CLIP, and (2) whether and how IncRNAs regulate de novo recruit-
ment of their interacting proteins to distant loci. Our in vitro
binding analyses of Meg3 IncRNA suggest that JARID2 does
not bind to RNA in a sequence-specific manner, consistent
with the fact that the primary sequence of IncRNAs is not well
conserved (Ulitsky et al., 2011).

In conclusion, we have demonstrated that JARID2, an essen-
tial regulatory component of PRC2 in pluripotent stem cells, con-
tains an RNA-binding region that mediates, at least in part, its
interaction with the imprinted IncRNA MEGS3. This—and possibly
other—RNA interaction contributes to proper recruitment and
assembly of PRC2 on target genes and likely plays an important
role in orchestrating the epigenetic regulation of gene expression
that accompanies the transition from stem cell pluripotency to
differentiation.

EXPERIMENTAL PROCEDURES

For information about antibodies, oligonucleotides, and plasmids see Tables
S4-S6 and the Supplemental Experimental Procedures.

Cells

HiPSCs were cultured as described previously (Nishino et al., 2011). Cells were
harvested at passage 34 (UtE-iPS-4), 41 (UtE-iPS-11), 45 (UtE-iPS-7), 41 (AM-
iPS-6), 50 (AM-iPS-8), 39 (UtE-iPS-6), 41 (MRC5-iPS-25), and 90 (Edom-
iPS-2). Human foreskin fibroblasts (#PCS-201-010, lot# 58490326; ATCC)
were cultured in fibroblast basal medium (ATCC) plus fibroblast growth kit-
low serum (ATCC). KH2 ESCs expressing the reverse tetracycline-controlled
transactivator (rtTA) (Hochedlinger et al., 2005) were maintained in standard
mouse ESC (mESC) culture conditions. KH2 lines expressing Jarid2 and
Jarid2 4rgr Were generated by transfection of the relevant pINTA-N3 construct
and selecting with 50 ug/ml Zeocin (Invitrogen). Transgene expression was
induced with doxycycline for 24 hr. E14Tg2A.4 mESC lines (E14 mESC) and
HEK293 and HEK293T cells were cultured as described previously (Kaneko
et al., 2010). Jarid2 knockdown mESCs were described previously (Li et al.,
2010).

In Vitro Binding Assays
Protein purification, synthesis of HOTAIR IncRNA (1-333), and biotinylated
RNA pull-down assays were described previously (Kaneko et al., 2010). All
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RNA fragments were generated by in vitro transcription; see the Supplemental
Information for details.

LncRNA-mediated stimulation of EZH2-JARID2 interactions was assayed
by incubating FLAG- and 6xHis-tagged EZH2 (20 pmol) with increasing
amounts (0-12 pmol) of IncRNAs in 100 pl of binding buffer (50 mM Tris-HCI,
pH 7.9; 100 mM KCI; 0.1% NP-40) for 30 min at 25°C. 6xHis-tagged truncated
JARID2 (40 pmol) was added to the reaction and incubated for 30 min at 25°C.
Complexes were purified using FLAG-M2 affinity gel (Sigma), after washing
with binding buffer.

For JARID2-Meg83 in vitro binding assays, 4 ug of GST-JARID2 119450 Were
incubated with a series of Meg3 fragments (1 ug, 400 nt each; see Table S7).
Bound RNAs were purified with glutathione beads, resolved with 7M urea gels,
stained with SYBR-gold (Invitrogen), and quantified with an ImageQuant
LAS4000 (GE Healthcare Life Sciences).

Knockdowns

For conditional knockdown of Ezh2 in E14 mESCs, we generated stable clones
with an integration of pTRIPZ lentiviral inducible shRNAmir targeting human
and mouse Ezh2 (#RHS4696-99635303; Open Biosystems). Selection was
done by puromycin (1 pg/ml) and clones were screened by red fluorescent pro-
tein (RFP) expression after 3-4 days of doxycycline (1 pg/ml) induction.

For transient knockdown of Meg3, we tested four siRNAs from QIAGEN
(5105169486, S105169710, SI01060129, and SI01060136) and used the siRNA
resulting in the most efficient knockdown (SI05169486) (see Supplemental
Information).

ChiP

ChIP from hiPSCs, foreskin fibroblast, and mESCs was performed as
described (Kaneko et al., 2007), with minor modification, and libraries were
constructed as described (Gao et al., 2012). Briefly, cells were crosslinked
with 1% formaldehyde for 10 min and sonicated in ChIP buffer (50 mM Tris-
HCI [pH 7.9], 150 mM NaCl, 1% Triton X-100, 0.5% NP-40, 5 mM EDTA
[pH 8.0], 1 mM phenylmethanesulfonylfluoride, and protease inhibitors) with
a Diagenode Bioruptor. Incubations with antibodies were carried out in an
ultrasonic water bath for 30 min at 4°C. Samples were decrosslinked at
65°C for ~16 hr for library construction or 95°C 10 min for ChIP-gPCR. See
the Supplemental Information for more details.

RNA Immunoprecipitation
For Figures 3G and 3H, nuclear extracts were obtained using an established
protocol (Dignam et al., 1983) with minor modifications to minimize RNase
activity, lysates were diluted in RIP buffer (20 mM Tris [pH 7.9]4-c, 200 mM
KCI, 0.05% IGEPAL CA-630, 10 mM EDTA), cleared by centrifugation at
20,000 x g for 10 min, and incubated with depleting amounts of antibody
for 3 hr at 4°C. Immunocomplexes were recovered with protein G-coupled
dynabeads (Invitrogen) for 1 hr at 4°C. Beads were washed in RIP-W buffer
(20 mM Tris [pH 7.9]4-c, 200 mM KClI, 0.05% IGEPAL CA-630, 1 mM MgCl,)
twice and incubated with 2 U TURBO DNase (Ambion) in 20 pl RIP-W buffer
for 10 min at room temperature to avoid DNA bridging artifacts. After two addi-
tional washes, RNA was eluted and purified with TRIzol (Invitrogen).

For Figures 2C-2F, RIPs were performed on whole-cell lysates, as
described before (Kaneko et al., 2010) (see also Supplemental Information).

ChlIP-Seq Analysis

Sequenced reads from ChIP-seq experiments were mapped with BOWTIE
using parameters -v2 -m4-best (Langmead et al., 2009). Normalized
genome-wide read densities were computed and visualized on the UCSC
genome browser. Bound regions (ERs) were identified using MACS 2.09
(Zhang et al., 2008) and default parameters. ERs were associated to gene
targets using ChiIPpeakAnno and ENSEMBL annotation 67.

PAR-CLIP

ESCs were pulsed with 100 uM 4-SU (Sigma) for 16-24 hr and crosslinked with
400 mJd/cm? UVA (365 nm) using a Stratalinker UV crosslinker (Stratagene).
Cells were lysed for 10 min at 37°C in CLIP buffer (20 mM HEPES [pH 7.4],
5mM EDTA, 150 mM NaCl, 2% lauryldimethylbetaine) with protease inhibitors,
20 U/ml Turbo DNase (Life Technologies), and 200 U/ml murine RNase inhib-
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itor (New England Biolabs). IPs were carried out in CLIP buffer for 1 hr at 4°C.
When necessary, extracts were treated with RNase A + T1 cocktail (Ambion)
for 5’ at 37°C. Immunocomplexes were recovered with protein G-coupled
dynabeads for 45 min at 4°C. DNA was removed with Turbo DNase (2 U in
20 pl). Crosslinked RNA was labeled by incubations with 5U Antarctic phos-
phatase and 5U T4 PNK (both from New England Biolabs) in presence of
10 uCi [y-*2P] ATP (PerkinElmer, MA). Labeled material was resolved on 8%
bis-tris gels, transferred to nitrocellulose, and exposed to autoradiography
films for 1-24 hr.

For PAR-CLIP-seq, 100 pmol of a 3'-blocked DNA adaptor was ligated to
the RNA after dephosphorylation and before 5’ labeling by incubating the
beads with T4 RNA ligase 1 (New England Biolabs) for 1 hr at 25°C. After auto-
radiography, bands were excised and the RNA eluted with proteinase K for
30 minutes at 37°C and proteinase K in 3.5M urea for 30 minutes at 55°C.
Custom 5’ adapters were ligated, and the products were size-selected on
polyacrylamide or agarose gels, amplified, and sequenced on an lllumina
HiSeq 2000.

For the analysis, adapter sequences were removed and reads < 17 nt dis-
carded. The remaining reads were mapped to the mm9 genome using
BOWTIE (Langmead et al., 2009), allowing two mismatches and removing
duplicates. RCSs were identified with PARalyzer (Corcoran et al., 2011)
requiring at least two T— C conversions per RCS. For Figure 2F, RCSs were
assigned to IncRNAs in ENSEMBL 67 when they overlapped anywhere within
the gene body to account for imprecisions in the annotation of IncRNAs.

RNA Structural Predictions

Structural predictions and minimum free-energy calculations shown in Fig-
ure S3 were performed with the Vienna RNA Websuite using default settings
(Gruber et al., 2008).

ACCESSION NUMBERS

The ChIP and CLIP sequences reported in this paper have been deposited to
the Gene Expression Omnibus (GEO) with the accession number GSE48518.
EZH2 PAR-CLIP-seq data used for comparative analyses were taken from
GEO accession number GSE49433 (Kaneko et al., 2013).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
seven figures, and seven tables and can be found with this article online at
http://dx.doi.org/10.1016/j.molcel.2013.11.012.
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SUMMARY

Epigenomic profiling by chromatin immunoprecipita-
tion coupled with massively parallel DNA sequencing
(ChiP-seq) is a prevailing methodology used to
investigate chromatin-based regulation in biological
systems such as human disease, but the lack of
an empirical methodology to enable normalization
among experiments has limited the precision and
usefulness of this technique. Here, we describe a
method called ChIP with reference exogenous
genome (ChIP-Rx) that allows one to perform
genome-wide quantitative comparisons of histone
modification status across cell populations using
defined quantities of a reference epigenome. ChIP-
Rx enables the discovery and quantification of dy-
namic epigenomic profiles across mammalian cells
that would otherwise remain hidden using traditional
normalization methods. We demonstrate the utility
of this method for measuring epigenomic changes
following chemical perturbations and show how
reference normalization of ChiP-seq experiments en-
ables the discovery of disease-relevant changes in
histone modification occupancy.

INTRODUCTION

The ability to map genomic occupancy of transcriptional regula-
tors, histone posttranslational modifications, and DNA methyl-
ation (epigenomic modifications) has enabled the elucidation of
transcriptional mechanisms, genome organization, mapping of
functional regulatory elements, and discovery of disease-associ-
ated chromatin markers (Badeaux and Shi, 2013; Barski et al.,
2007; Lee and Young, 2013; Rivera and Ren, 2013; Zhou et al.,
2011). Such targeted and large-scale epigenome mapping
efforts have revealed chromatin regulatory proteins that are ther-
apeutic targets for a wide variety of human diseases (Azad et al.,
2013; Dawson and Kouzarides, 2012; Deshpande et al., 2012;
Wee et al., 2014). Many of these chromatin regulators exhibit
cell-type-selective, gene-selective, or disease-relevant effects,

@ CrossMark

creating a critical need to study the chromatin modifications
catalyzed by these regulators. Accurate quantification of both
global and loci-specific chromatin modifications is needed to
allow the discovery and characterization of epigenomic regula-
tors and epigenome-modulating agents.

Traditional ChIP-seq methodologies are not inherently quanti-
tative and therefore do not allow direct comparisons between
samples derived from different cell types or between cells
that have experienced a perturbation, such as a genomic alter-
ation or chemical treatment. For example, if we employ the tradi-
tional reads per million (RPM) ChIP-seq normalization method, a
cell population containing chromatin state “A” (a high level of
histone posttranslational modification) will appear similar to a
cell population containing chromatin state “B,” where 50% of
the signal has been removed (Figure 1A), because the signal
is quantified as a simple percentage of all mapped reads. More-
over, additional variables, such as variations in genome frag-
mentation, immunoprecipitation efficiency, or other experi-
mental steps, frequently confound analysis. Efforts to correct
for these variables have produced in silico normalization strate-
gies, but an empirical method to enable direct and quantitative
comparisons among epigenomic ChlP-seq data sets is still
lacking (Bardet et al., 2012; Landt et al., 2012; Liang and Keles,
2012; Liu et al., 2013; Nair et al., 2012). Because of the
experimental and analytical restrictions of ChlP-seq, a robust
normalization methodology is needed to quantify epigenome
differences among varying cell populations, treatments, and
genomic states.

RESULTS

Here we present a method, called ChIP with reference exoge-
nous genome (ChIP-Rx), that utilizes a constant amount of refer-
ence or “spike-in” epigenome, added on a per-cell basis, to
allow direct comparison between two or more ChlP-seq samples
(Figure 1B). Analogous methodologies have been applied in
areas of gene-expression analysis that have revealed global
transcriptional amplification upon normalization and in Meth-
ylC-seq, where bisulfate conversion rates have been normalized
(Kanno et al., 2006; Krueger et al., 2012; Lin et al., 2012; Lovén
et al., 2012; van de Peppel et al., 2003). These advancements
have allowed standardization, precision, and a mechanistic

Cell Reports 9, 1163-1170, November 6, 2014 ©2014 The Authors 1163
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Figure 1. Normalization and Interpretation of ChlP-Seq Data

(A) Schematic representation of a typical ChlP-seq data workflow. Interrogation of a human epigenome (Blue circles, nucleosomes) with a full complement of
histone modification (red circles, top) versus an epigenome with a half complement of histone modification (red circles, bottom). ChIP, sequencing, and mapping
using reads per million (RPM) reveals ChlP-seq peaks (blue). A comparison of the peaks as a percentage of the total reads reveals little difference.

(B) Schematic representation of a ChlP-seq data workflow with reference genome normalization. Interrogation of a human epigenome (Blue circles, nucleosomes)
with a full complement of histone modification (red circles, top) versus an epigenome with a half complement of histone modification (red circles, bottom). A fixed
amount of reference epigenome (orange, nucleosomes; red, histone modifications) is added to human cells in each condition. After ChIP, sequencing, and
mapping, the ChIP sequence reads are normalized to the percentage of reference genome reads in the sample (reference-adjusted RPM [RRPM]). A comparison
of ChlP-seq signals using normalized reads reveals a 50% difference between peaks. This method is called ChIP with reference exogenous genome (ChIP-Rx).

understanding of RNA transcription (van Bakel and Holstege,
2004; Jiang et al., 2011; Li et al.,, 2013); however, no cell-
count-normalized methods have been applied to global correc-
tion of histone posttranslational modifications. Since a vast array
of histone modifications have been described in eukaryotic
cells that play roles in organismal development, maintenance
of cell state, differentiation, and disease, including those associ-
ated with transcriptional processes, genome organization,
DNA repair, and cell-cycle progression (Calo and Wysocka,
2013; Pastor et al., 2013; Rinn and Chang, 2012; Rivera and
Ren, 2013; Tan et al., 2011; Tian et al., 2012), a quantitative
method for comparing these key marks is needed. We reasoned
that the Drosophila melanogaster genome would be a desir-
able exogenous reference for mammalian cells because the
Drosophila genome is well studied and has a high-quality
sequence assembly, there is minimal mapping of the Drosophila
genome sequence to human or mouse genomes (>0.05%; Table
S1; Supplemental Experimental Procedures), Drosophila cells
are readily available in large quantities, and the Drosophila epige-
nome displays nearly all of the key histone modification marks
reported in humans. Moreover, histone proteins are among the
most conserved proteins from humans to yeast, indicating that

available ChlIP-quality antibodies would likely recognize both
Drosophila and human chromatin (Sullivan et al., 2002; Wolffe
and Pruss, 1996).

To determine the impact of mixing interspecies epige-
nomes, we tested whether the addition of a reference genome
(Drosophila S2 cells) would inherently affect our ability to detect
a histone modification within the test sample (human cells) using
ChlP-seq. We compared Jurkat cells alone with Jurkat cells that
had been mixed with Drosophila cells and analyzed the resulting
histone H3 lysine-79 dimethyl (H3K79me2) ChIP-seq profiles
(Figure S1; Table S2). We determined that mixing of Drosophila
and human cells did not induce large-scale changes in the
H3K79me2 profiles, as the profiles of these cell populations
were highly correlated by total signal as well as enriched
loci overlap (Pearson correlation = 0.96; Supplemental Experi-
mental Procedures). Moreover, reads originating from human
or Drosophila could be separated with 99% accuracy (Supple-
mental Experimental Procedures). Together, these results indi-
cate that the addition of a reference genome did not impede
our ability to detect histone mark occupancy.

We devised an experiment to test our ability to detect changes
in histone modification occupancy throughout the human

1164 Cell Reports 9, 1163-1170, November 6, 2014 ©2014 The Authors



Figure 2. Experimental Design of Differen-
tial H3K79me2 Detection

(A) Schematic representation of differential
H3K79me2 detection and normalization strate-
gies. Two populations of cells were produced: a
human epigenome (blue nucleosomes) with a full
complement of H3K79me2 (red circles, top left)
and a human epigenome (blue nucleosomes)
with depleted H3K79me2 due to EPZ5676 expo-
sure (top right). These cells were mixed in defined
proportions in order to allow a dilution of total
genomic histone modification (dark red to pink).
Cell mixtures were subjected to ChlP-seq in the
presence of the reference Drosophila epigenome
(orange). ChlP-seq signals were calculated based
on traditional or Drosophila-reference-normalized
methods. See also Figure S1.

(B) Western blot validation of H3K79me2 depletion
in Jurkat cells. Mixtures of 0%-100% EPZ5676-

treated cells (0:100; 25:75; 50:50, 75:25; 100:0 proportions of [DMSO-treated:EPZ5676-treated] cells) were measured by immunoblot (IB) for the presence of
H3K79me2, H3K4me3, or total histone H3 (loading control). Treated cells were exposed to 20 uM EPZ5676 for 4 days.

See also Table S1.

epigenome using ChIP-Rx (Figure 2A). We reasoned that an
initial test of ChIP-Rx normalization should feature an epige-
nomic modification that could be readily removed and was not
essential for cell viability in the model cell line. Using the selective
DOT1L inhibitor EPZ5676 (Daigle et al., 2013), we depleted the
Histone H3 lysine-79 dimethyl (H3K79me2) modification from
Jurkat cell bulk histones (Figure 2B). The H3K79me2 modifica-
tion is catalyzed by the DOT1L protein and is associated with
the release of paused RNA Polymerase Il and licensing of tran-
scriptional elongation (van Leeuwen et al., 2002; Ng et al.,
2002; Shanower et al., 2005; Steger et al., 2008). This modifica-
tion is typically deposited within the 5’ regions of genes and its
presence is not critical for Jurkat cell viability (Daigle et al.,
2011, 2013; Schibeler et al., 2004; Steger et al., 2008). By mixing
untreated cells (full H3K79me2) with EPZ5676-treated cells
(H3K79me2 depleted), we created a set of cell populations
with defined quantities of H3K79me2, as verified by immunode-
tection (Figure 2B). To each of these cell populations we added
Drosophila cells at a ratio of one Drosophila cell per two hu-
man cells, which provided a constant “reference” amount of
H3K79me2 per human cell. We performed ChIP-seq from sam-
ples consisting of 0:100, 25:75, 50:50, 75:25, and 100:0 propor-
tions of EPZ5676 to DMSO-treated Jurkat cells. We then tested
whether traditional ChIP-seq analysis methods would reveal the
decrease in human per-cell H3K79me2 occupancy and, if not,
whether the addition of the Drosophila epigenome would allow
detection of H3K79me2 removal.

A key prediction of our normalization method is that as the
global level of a histone modification is depleted in human cells,
the percentage of total reads mapping to the reference
Drosophila genome should increase. This is because the con-
stant amount of reference genome added per human cell
accounts for a greater percentage of total ChIP DNA fragments
as human epitopes are lost (see the ratio of blue to orange
DNA fragments in Figure 1B). To test this prediction, we interro-
gated cells with defined H3K79me?2 levels (Figure 2B) by ChIP-
Rx to measure genomic H3K79me2 occupancy. As a control,
we also measured H3K4me3 occupancy, which is a histone

modification that is not appreciably changed within our test
cell populations (Figure 2B). As predicted, H3K79me2 depletion
in Jurkat cells both reduced ChIP-Rx reads mapping to the hu-
man genome and increased reads mapping to the Drosophila
genome (Figure 3A). We did not observe a similar change in
the mapping ratio for H3K4me3 in the same samples, consistent
with the finding that H3K4me3 was not preferentially removed
from the human genome (Figure 3B). These results demonstrate
that a reference genome can internally normalize the read count.

We next used the reference Drosophila genome to quantita-
tively normalize across experiments. To make ChlP-seq data
quantitative on a per-cell basis, it is necessary to introduce a
reference signal that is constant per cell, from which a normaliza-
tion factor can be derived. Our ChIP-Rx protocol uses the signal
from a fixed amount of Drosophila genome per human cell as this
reference. We derived a normalization factor (see the Supple-
mental Experimental Procedures) for each experiment, such
that the resulting Drosophila signal was equilibrated across all
experiments (Table S2; Figure S2). Using traditional RPM
normalization, the loci-specific ChlP-seq profiles and metagene
profiles for H3K79me2 and H3K4me3 appear unchanged for the
majority of samples (Figures 3C-3F), despite evidence that the
H3K79me2 modification is progressively depleted (Figure 2B).
After normalization with the Drosophila reference (normalized
reference-adjusted RPM [RRPM)]), a striking and gradated
decrease in H3K79me2 signal across the samples is evident
(Figures 3C, 3E, 3G, and S3). Normalization did not appreciably
affect the metagene profiles of the control H3K4me3 experi-
ments (Figures 3D, 3F, 3H, and S3). Repeat experiments pro-
duced the same result in all cases: normalization revealed a
loss of H3K79me2 across the samples and H3K4me3 profiles
were not significantly affected (Figure S4). These results indicate
that normalization to a Drosophila reference is an effective
method for quantitatively comparing multiple experiments and
can reveal changes in histone modification that may not be
apparent without proper normalization.

Having validated the ChIP-Rx methodology using standard-
ized quantities of H3K79me2, we next tested our ability to
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Figure 3. ChIP-Rx Reveals Quantitative Epigenome Changes

(A and B) Percentage of reads aligning to either test (human, blue) or Drosophila (reference, orange) genomes after H3K79me2 ChIP-Rx (A) or H3K4me3 ChIP-Rx
(B). Samples containing 0%, 25%, 50%, 75%, or 100% EPZ5676 treated Jurkat cells were used as defined in Figure 2B.

(C and D) Sequenced reads from H3K79me2 (C) and H3K4me3 (D) immunoprecipitations at the RPL13A gene locus in traditional reads per million (RPM,top) or
reference-adjusted reads per million (RRPM, bottom; see Experimental Procedures). Color indicates the percentage of sample treated with EPZ5676. The gene
model is shown below the track.

(E) Meta-gene profile of H3K79me2-occupied genes in Jurkat cells. Meta-gene profiles were produced with traditional RPM (left) or RRPM (right). Color indicates
the percentage of Jurkat cell sample treated with EPZ5676 as in Figure 2B. Region —5 to +10 kb around the transcription start site (TSS) is shown. Meta-gene
profile was derived from top 5,000 protein-coding genes as defined by total H3K79me2 signal in the 0% treated (untreated with EPZ5676) sample. A meta-gene
profile representing all genes is shown in Figure S3.

(F) Meta-gene profile of H3K4me3-occupied genes in Jurkat cells. Meta-gene profiles were produced with traditional RPM (left) or RRPM (right). Color indicates
the percentage of Jurkat cell sample treated with EPZ5676 as in Figure 2B. Region —5 to +10 kb around the transcription start site (TSS) is shown. Meta-gene
profile was derived from top 5,000 protein-coding genes as defined by total H3K4me3 signal in the 0% treated (untreated with EPZ5676) sample. A meta-gene
profile representing all genes is shown in Figure S3.

(G and H) Line graphs display the observed fold-change difference in average meta-gene signal across the —5 to +10 kb window around the TSS for each
H3K79me2 (G) or H3K4me3 (H) ChIP sample (x axis) relative to the signal from the 0% treated population using traditional (gray) or reference (black) normalization.
See also Figures S2-S4 and Table S2.

normalize between ChlIP-seq experiments in a disease-relevant  of the mixed-lineage leukemia (MLL) gene (Daigle et al., 2011,
system. MV4;11 acute myelomonocytic leukemia cells are a 2013; Deshpande et al., 2012). We treated MV4;11 cells with
DOT1L-inhibitor sensitive model of human mixed-lineage-linked DOT1L inhibitor and measured changes in H3K79me2 occu-
leukemia, a disease characterized by reciprocal translocations  pancy in the presence or absence of the reference Drosophila
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Figure 4. ChIP-Rx Reveals Epigenomic Alterations in Disease Cells that Respond to Drug Treatment
(A) Western blot showing the levels of H3K79me2 in MV4;11 cells after treatment for 4 days with increasing concentrations of EPZ5676.

(B) Percentage of H3K79me2 ChlIP-seq reads aligning to either test (human, blue) or Drosophila (reference, orange) genomes after H3K79me2 ChIP-Rx from
MV4;11 cells treated as in (A).

(C) Sequenced reads from H3K79me2 immunoprecipitations at the REXO1 gene locus in standard RPM (top) or RRPM (bottom) (see Experimental Procedures).
Color indicates the concentration of EPZ5676 given to each sample. The gene model is shown below the track.

(D) Meta-gene profile of H3K79me2-occupied genes in MV4;11 cells. Meta-gene profiles were produced with traditional Reads Per Million (RPM, left) or
Reference-adjusted Reads Per Million (RRPM, right). Color indicates the concentration of EPZ5676 used in each sample. The region —5 kb to +10 kb around the
TSS is shown. Meta-gene profile was derived from top 5,000 protein-coding genes as defined by total H3K79me2 signal in the OnM treated (untreated with
EPZ5676) sample. A meta-gene profile representing all genes is shown in Figure S3.

(E) Line graph displays the observed fold-change difference in average meta-gene signal across the —5 to +10 kb window around the TSS for each H3K79me2
ChlIP sample (x axis) relative to the signal from the 0 nM treated population using standard (gray) or reference (black) normalization.

(F) Box plots display the distribution of the observed fold change of H3K79me2 signal —5 kb to +10 kb around the TSS of all genes between the 0 nM and 5 nM
treated samples (blue, MV4;11; green, Jurkat) for all genes using traditional (left) or reference-adjusted (right) normalization (see the Supplemental Experimental

Procedures).
See also Figures S3 and S5 and Table S2.

epigenome (Figures 4A-4E, S5A, and S5B). EPZ5676 induced a
dose-dependent decrease in bulk H3K79me2 (Figure 4A), but
this result was masked when we quantified H3K79me2 occu-
pancy using traditional normalization (Figures 4C and 4E). We
observed a dose-dependent decrease in H3K79me2 genomic
occupancy only after employing reference normalization (Fig-
ures 4C—4E). This unmasking of epigenomic effects may be crit-
ical for understanding the cell-type-selective effects of small-
molecule epigenome modulators. For example, MV4;11 cells
exhibit global H3K79me?2 depletion at a low dose of EPZ5676,
consistent with the known selectivity of the DOT1L inhibitor for
leukemic cells carrying MLL translocations, but EPZ5676-insen-
sitive Jurkat cells do not (Figures 4A and S5C; Daigle et al., 2013).

Thus, normalizing to a reference exogenous genome rectifies the
protein-level measurements and genome occupancy of modi-
fied histones, and reveals subtle epigenomic changes that may
underlie or predict cellular responses to drugs (Figure 4). These
results show that ChlP-Rx enables the discovery of epigenomic
changes that can provide insight into disease and inform drug
mechanisms.

DISCUSSION
In summary, we have demonstrated that ChIP-Rx allows the dis-

covery and quantification of dynamic epigenomic profiles across
mammalian cells that would otherwise remain hidden using
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traditional normalization methods. A recent study employed a
similar reference strategy for ChlP-seq normalization (Bonhoure
et al., 2014); however, our method offers two crucial advantages
that allow direct comparative epigenomic analysis. First, our
method introduces the reference at the beginning of the experi-
ment, thus normalizing for variation throughout the experiment,
including chromatin fragmentation and immunoenrichment, both
of which are critical for epitope and genome retrieval (Kidder
et al., 2011; Meyer and Liu, 2014; Raha et al., 2010). Second, as
was analogously shown for RNA expression correction (Lovén
et al., 2012), our method introduces the reference “spike-in” on
a per-cell basis as opposed to total chromatin, thus allowing
the detection of unidirectional chromatin changes irrespective of
variations in ploidy or gross chromatin. Thus, our method provides
greater accuracy in determining epigenome changes that occur
upon cell perturbation or exposure to small-molecule inhibitors
as compared with current methods. Importantly, ChIP-Rx allows
for the detection of subtle epigenomic changes, as opposed to
qualitative occupancy calls, and thus advances the ChIP-seq
methodology from a descriptive, binary readout to one that reveals
gradated epigenomic changes. This is particularly important for
the dose-ranging characterization of chemical tools and therapeu-
tics targeting chromatin-associated complexes via genome-wide
approaches. Application of this methodology to additional model
systems, including mouse, rat, and zebrafish (Table S1), as well
as additional histone modifications, including repressive (i.e.,
H3K27me3) and activating (i.e., H3K27ac) histone modifications,
will enable far-reaching studies of comparative epigenomics.

We recommend the implementation of ChIP-Rx whenever
quantitative or comparative epigenomic changes are under
investigation. The method described here will be critical for un-
derstanding the global and site-selective epigenomic changes
that occur in human disease, during cell-state changes, and
especially the action of small-molecule inhibitors of chromatin-
modulating proteins.

EXPERIMENTAL PROCEDURES

Human Cell Lines, Growth, and Treatment

Jurkat cells were obtained from ATCC and maintained in RPMI (Life
Technologies) supplemented with 10% fetal bovine serum (FBS; Life Technolo-
gies)at5% CO,in37°C. MV4;11 cells were obtained from ATCC and maintained
in RPMI (Life Technologies) supplemented with 10% FBS at 5% CO, in 37°C.

Jurkat cells were treated with DMSO or EPZ5676 (Selleck Chemicals, cata-
log number S7062) at 5 nM or 20 uM for 4 days, and MV4;11 cells were treated
with DMSO or EPZ5676 at 0.5 nM, 2 nM, or 5 nM for 4 days. Live-cell numbers
were quantified using the Countess cell counter (Life Technologies).

At harvest, cells were crosslinked with 1% formaldehyde by addition of 1/10
volume of fresh 11% formaldehyde solution (11% formaldehyde 0.1 M NaCl,
1 mM EDTA, 0.5 mM EGTA, 50 mM HEPES) and incubation at room tempera-
ture for 8 min. Crosslinking reactions were quenched with a 1/20 volume of
2.5 M glycine for 1-5 min and cells were pelleted. The cells were then washed
three times with ice-cold PBS. Washed cell pellets were flash frozen and
stored at —80°C.

Preparation of Drosophila S2 Cells

Drosophila S2 cells (ATCC catalog number CRL-1963; Biovest part number
00.763/00.627) were cultured in Schneider’s Drosophila media (Life Technol-
ogies catalog number 21720-024) supplemented with 10% FBS to attain a
density of 0.5-0.6 x 10° cells/ml. Cell culture and scale-up to 2 L was per-
formed by Biovest International.

At harvest, cells were crosslinked with 1% formaldehyde by addition of a
1/10 volume of fresh 11% formaldehyde solution (11% formaldehyde 0.1 M
NaCl, 1 mM EDTA, 0.5 mM EGTA, 50 mM HEPES) and incubation at room tem-
perature for 8 min. Crosslinking reactions were quenched with a 1/20 volume
of 2.5 M glycine for 1-5 min and cells were pelleted. The cells were then
washed three times with ice-cold PBS. Washed cell pellets were flash frozen
and stored at —80°C at 1 x 108 cells per aliquot.

ChIP-Rx

For each ChIP-Rx experiment, a 2:1 ratio of human:Drosophila cells was used.
This corresponds to 20 million crosslinked human cells and 10 million cross-
linked S2 cells (Jurkat experiments) or 15 million crosslinked human cells
and 7.5 million crosslinked S2 cells (MV4;11 experiments).

S2 cells were added to human cells at the beginning of the ChIP-Rx work-
flow (during nuclei isolation). Once Drosophila S2 and human cells were com-
bined, the sample was treated as a single ChIP-seq sample throughout the
experiment until completion of DNA sequencing.

Briefly, frozen, crosslinked human and Drosophila cells were resuspended in
parallel in cold Lysis Buffer 1 (140 mM NaCl, 1 mM EDTA, 50 mM HEPES, 10%
glycerol, 0.5% NP-40, 0.25% Triton-X-100), incubated 10 min at 4°C, and pel-
leted. Both human and Drosophila cell samples were resuspended in parallel in
Lysis Buffer 2 (10 mM TRIS [pH 8.0], 200 mM NaCl, 1 mM EDTA, 0.5 mM
EGTA), incubated for 10 min at 4°C, and combined to the desired cell number
ratios (two human cells per one Drosophila cell). The composite cell nuclei was
then pelleted and resuspended in sonication buffer (10 mM TRIS [pH 8.0],
1 mM EDTA, 0.1% SDS).

Composite samples (human + Drosophila S2) in sonication buffer were son-
icated using a Covaris E220 sonication water bath for 5 min. Sheared chro-
matin was diluted 1:1 in 2x dilution buffer (300 mM NaCl, 2 mM EDTA,
50 mM TRIS [pH 8.0], 1.5% Triton-X, 0.1% SDS) and incubated with either
H3K79me2 (Abcam 3594)- or H3K4me3 (Millipore 07-473)-conjugated Protein
G Dynal beads (Invitrogen) overnight (8-16 hr, rotating) at 4°C, and then
washed two times with wash buffer 1 (50 mM HEPES, 140 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 0.75% Triton-X, 0.1% SDS, 0.05% DOC), two times
with high-salt wash buffer (50 mM HEPES, 500 mM NaCl, 1 mM EDTA,
1 mM EGTA, 0.75% Triton-X, 0.1% SDS, 0.05% DOC), and one time with
TE-NaCl buffer (10 mM Tris [pH 8.0], 1 mM EDTA, 50 mM NaCl). Samples
were eluted from beads for 1 hr at 65°C in elution buffer (50 mM TRIS [pH
8.0], 10 mM EDTA, 1% SDS) and supernatant reverse-crosslinked at 65°C
for 6-16 hr. Samples were diluted 1:1 with TE buffer (50 mM TRIS [pH 8.0],
1 mM EDTA) and treated with RNase A (0.2 mg/ml) for 2 hr at 37°C and then
Proteinase K (0.2 mg/ml) for 2 hr at 55°C. DNA was isolated by phenol-chloro-
form extraction and ethanol precipitation. For detailed protocols see the Sup-
plemental Experimental Procedures and Guenther et al. (2008).

Library Construction, Sequencing, and Data Collection

Libraries were constructed with the lllumina Tru-Seq library preparation kit
using a target fragment size of 200-400 bp and multiplexing barcodes.
Libraries were sequenced using lllumina HiSeq 2000 with single-end reads
for 40 cycles. Sequences were demultiplexed and aligned using Bowtie2
against a “genome” that combines the human hg19 genome and the
Drosophila dm3 genome (see the Supplemental Experimental Procedures). In-
dividual accession numbers and read statistics available in Table S2.

Western Blots

Cells were harvested from all treatment groups and lysed with Triton extraction
buffer (PBS containing 0.5% Triton X-100 [v/v], cOmplete Protease Inhibitors
[Roche]) for 10 min with rotation. Nuclei were collected and acid extracted
with 0.2 N HCl overnight. Histone proteins were collected from the supernatant
and immunoblotted for H3K4me3 (Millipore 07-473), H3K79me2 (Abcam
3594), and histone H3 (Abcam 1791).

Determination of the Normalization Factor

A complete description of the basis and derivation of the ChIP-Rx normaliza-
tion factor is provided in the Supplemental Experimental Procedures. In brief,
we derived a normalization constant, «, such that after normalization the signal
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per-reference cell (B) is the same across all samples. The total ChlP-seq signal
derived from reference cells is simply the count of reads (in millions) aligning to
the Drosophila genome, which we represent as Ny. Because the percentage of
reference cells as a fraction of the total number of cells is constant and we
assume that the epigenome of the reference cells does not vary appreciably,
we can derive o as

axNg=8

Because B is a constant, we can simply rewrite this as
axNg=1

or

1

a:N—d,

multiplying the read counts by a produces a normalized read count in normal-
ized RRPM.
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SUMMARY

Transcription factor (TF) DNA sequence preferences
direct their regulatory activity, but are currently
known for only ~1% of eukaryotic TFs. Broadly sam-
pling DNA-binding domain (DBD) types from multiple
eukaryotic clades, we determined DNA sequence
preferences for >1,000 TFs encompassing 54
different DBD classes from 131 diverse eukaryotes.
We find that closely related DBDs almost always
have very similar DNA sequence preferences,
enabling inference of motifs for ~34% of the
~170,000 known or predicted eukaryotic TFs. Se-
quences matching both measured and inferred
motifs are enriched in chromatin immunoprecipita-
tion sequencing (ChlP-seq) peaks and upstream of
transcription start sites in diverse eukaryotic line-
ages. SNPs defining expression quantitative trait
loci in Arabidopsis promoters are also enriched for
predicted TF binding sites. Importantly, our motif
“library” can be used to identify specific TFs whose
binding may be altered by human disease risk alleles.

@ CrossMark
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These data present a powerful resource for mapping
transcriptional networks across eukaryotes.

INTRODUCTION

Transcription factor (TF) sequence specificities, typically repre-
sented as “motifs,” are the primary mechanism by which cells
recognize genomic features and regulate genes. Eukaryotic
genomes contain dozens to thousands of TFs encoding at
least one of the >80 known types of sequence-specific DNA-
binding domains (DBDs) (Weirauch and Hughes, 2011). Yet,
even in well-studied organisms, many TFs have unknown
DNA sequence preference (de Boer and Hughes, 2012; Zhu
et al,, 2011), and there are virtually no experimental DNA
binding data for TFs in the vast majority of eukaryotes. More-
over, even for the best-studied classes of DBDs, accurate pre-
diction of DNA sequence preferences remains very difficult
(Christensen et al., 2012; Persikov and Singh, 2014), despite
the fact that identification of “recognition codes” that relate
amino acid (AA) sequences to preferred DNA sequences has
been a long-standing goal in the study of TFs (De Masi et al.,
2011; Desjarlais and Berg, 1992; Seeman et al., 1976). These
deficits represent a fundamental limitation in our ability to
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analyze and interpret the function and evolution of DNA
sequences.

The sequence preferences of TFs can be characterized sys-
tematically both in vivo (Odom, 2011) and in vitro (Jolma and Tai-
pale, 2011; Stormo and Zhao, 2010). The most prevalent method
for in vivo analysis is currently chromatin immunoprecipitation
sequencing (ChlP-seq) (Barski and Zhao, 2009; Park, 2009), but
ChlIP does not inherently measure relative preference of a TF to
individual sequences and may not identify correct TF motifs
due to complicating factors such as chromatin structure and part-
ner proteins (Gordan et al., 2009; Li et al., 2011; Liu et al., 2006;
Yan et al., 2013). In contrast, it is relatively straightforward to
derive motifs from all of the common methods for in vitro analysis
of TF sequence specificity, including protein binding microarrays
(PBMs), bacterial 1-hybrid (B1H), and high-throughput in vitro
selection (HT-SELEX) (Stormo and Zhao, 2010), all of which
have been applied to hundreds of proteins (Berger et al., 2008;
Enuameh et al., 2013; Jolma et al., 2013; Noyes et al., 2008).

Previous large-scale studies have reported that proteins with
similar DBD sequences tend to bind very similar DNA sequences,
even when they are from distantly related species (e.g., fly and
human). This observation is important because it suggests that
the sequence preferences of TFs may be broadly inferred from
data for only a small subset of TFs (Alleyne et al., 2009; Berger
et al., 2008; Bernard et al., 2012; Noyes et al., 2008). However,
these analyses have utilized data for only a handful of DBD clas-
ses and species and they contrast with numerous demonstra-
tions that mutation of one or a few critical DBD AAs can alter
the sequence preferences of a TF (Aggarwal et al., 2010; Cook
et al., 1994; De Masi et al., 2011; Mathias et al., 2001; Noyes
et al., 2008), which suggest that prediction of DNA binding pref-
erences by homology should be highly error-prone. To our
knowledge, rigorous and exhaustive analyses of the accuracy
and limitations of inference approaches to predicting TF DNA-
binding motifs using DBD sequences has not been done.

Here, we determined the DNA sequence preferences for
>1,000 carefully-selected TFs from 131 species, representing
all major eukaryotic clades and encompassing 54 DBD classes.
We show that, in general, sequence preferences can be accu-
rately inferred by overall DBD AA identity, suggesting that muta-
tions that dramatically impact sequence specificity are relatively
rare. By identifying distinct confidence thresholds for each indi-
vidual DBD class (i.e., levels of protein sequence identity above
which motifs can be assumed to be identical between two pro-
teins), we infer sequence preferences for roughly one-third of
all known eukaryotic TFs, based on experimental data for fewer
than 2% of them. Cross-validation indicates that ~89% of pre-
dicted sequence preferences are as accurate as experimental
replicates of the same TF. We demonstrate the functional rele-
vance and utility of both known and inferred motifs by showing
that they coincide with ChlP-seq binding peak sequences, are
enriched in the promoter regions of diverse eukaryotes, and
significantly overlap eQTLs in Arabidopsis. We also demonstrate
how our data can be used to predict the specific TFs whose
binding would be altered by a human disease risk allele. To
house the data and the resulting inferences, we have created
the Cis-BP database (catalog of inferred sequence binding pref-
erences), freely available at http://cisbp.ccbr.utoronto.ca.
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RESULTS

PBM Data for >1,000 Diverse Eukaryotic TFs

We sought to examine the relationship between the DBD AA
sequence identity and the DNA sequence specificity of any
two proteins and to simultaneously broadly survey the sequence
specificity of eukaryotic TFs. To identify TFs, we first scanned the
AA sequences for each of 81 different types of DBDs for which
there is an available Pfam model (Weirauch and Hughes,
2011), using known or predicted proteins in 290 sequenced
eukaryote genomes. We identified a total of 166,851 putative
TFs that fit these criteria. From these, we selected 2,913 individ-
ual TFs to analyze, using several different criteria aimed at
achieving the goals of our study, including a relatively even bal-
ance among DBD classes and species, a survey of different
levels of sequence identity among proteins, and a deeper focus
on several model organisms and abundant DBD classes (see
Experimental Procedures). Figure S1, available online, depicts
the overall scheme.

We analyzed each TF using PBM assays, following proce-
dures previously described (Berger et al., 2006; Weirauch
et al., 2013). The PBM technique can be summarized as follows:
a GST-tagged DNA-binding protein is “hybridized” to a double-
stranded DNA microarray, and subsequent addition of a
fluorescently tagged antibody reveals the DNA sequences that
the protein has bound and to what degree. Each PBM contains
a diverse set of ~41,000 35-mer probes, designed such that all
possible 10-mers are present once and only once; thus, all
nonpalindromic 8-mers are present 32 times, allowing for a
robust and unbiased assessment of sequence preference to all
possible 8-mers. Values for individual 8-mers are typically given
as both E scores (that represent relative rank of intensities and
range from —0.5 to + 0.5) (Berger et al., 2006) and Z scores
(that scale approximately with binding affinity) (Badis et al.,
2009). PBMs also allow derivation of position weight matrices
(PWMs) up to 14 bases wide (Badis et al., 2009; Berger et al.,
2006; Mintseris and Eisen, 2006; Weirauch et al., 2013), as well
as International Union of Pure and Applied Chemistry (IUPAC)
consensus sequences (Ray et al., 2013). PWMs can be repre-
sented as sequence logos (Schneider and Stephens, 1990)
that are typically taken as synonymous with “motifs.” Here, we
report 8-mer scores, PWMs, and consensus sequences, and
use whichever is best suited to individual analyses. For example,
while motifs are well suited for visualization of sequence prefer-
ences, and convenient for scanning longer sequences, they can
underestimate reproducibility of experiments due to the intro-
duction of uncertainties in the process of PWM derivation (Weir-
auch et al., 2013; Zhao and Stormo, 2011).

We analyzed each of the 2,913 proteins using two different
PBM arrays, designated “ME” and “HK” after their designers
(Lam et al., 2011). Of these, 1,032 (encompassing 1,017 different
TFs) yielded data that satisfy our stringent success criteria,
including E scores >0.45 on both arrays, and agreement in
both 8-mer data and motifs between the two arrays (Berger
et al., 2008; Weirauch et al., 2013) (see Experimental Proce-
dures). The distribution of the 1,032 proteins over 131 species
and 54 DBD classes is summarized in Figure 1A. Many values
in this matrix are zero because the majority of DBD classes are
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Figure 1. Overview of the Motif Data Set

(A) TFs characterized in this study by species and
DBD class. TFs with multiple DBD classes are
indicated with a “+” (e.g., AP2+B3). DBD classes
and species containing fewer than five members
are grouped into “Other.” Species are ordered by
the total number of TFs with characterized motifs.
(B) PBM-derived motifs are similar to previously
characterized motifs. We compared new PBM-
derived motifs to previously determined motifs for
the same TF. p values were calculated using the
TomTom PWM similarity tool (Tanaka et al., 2011),
with Euclidean distance and default parameter
settings. Dashed lines indicate mean (bottom) and
mean + 1 SD (top) of p values obtained from
10,000 randomly selected PWM pairs. “PBM
(same)” and “PBM (dif)” indicate PBMs from other
studies performed using the same, or different
array designs as this study, respectively.

See also Figure S1 and Tables S1, S2, and S6.

other technologies (B1H and HT-SELEX),
or derived from ChIP-seq experiments
(Figure 1B; sources provided as Table
S1; full motif comparisons provided as
Table S2). Importantly, a large majority
of the proteins we analyzed (894/1,017)
had no previous binding data, and among
these, roughly half yielded a motif that
is highly different from any previously
known motif (see Experimental Proce-
dures). For several DBD classes (CG-1,
CxC, GRAS, LOB, and Storekeeper) we
characterized sequence specificity for
the first time. CxC domains, for example,
span a wide range of organisms encom-
passing plants, animals, and protists
and recognize variations of a unique,
largely conserved TTTCGAAA motif.

Inference of TF Sequence
Specificity Using Degree of Identity
in the DNA-Binding Domain

We next used the PBM data to ask how
well the percent protein sequence identity
in the DBD between two proteins corre-
lates with similarity in their DNA sequence
preferences. As a measure of DNA
sequence preference similarity, we calcu-

only present in certain subsets of species (e.g., plant-specific
TFs) (Weirauch and Hughes, 2011). PBM failures may be due
to any of several causes, including protein misfolding, require-
ment for cofactors, or bona fide lack of sequence-specific
DNA binding activity.

For 123 of the 1,017 examined TFs, there are previously
described motifs. In most cases, the new motifs we obtained
are highly similar to motifs compiled from the literature (JASPAR
and Transfac), derived from PBMs in other studies, derived from

lated the overlap in high-scoring 8-mers (e.g., E score >0.45) (see
Experimental Procedures), as the E scores are on a uniform scale
that facilitates direct comparison. The boxplots shown in Figure 2
and Data S1 illustrate that there are different characteristic rela-
tionships between DBD identity and 8-mer overlap for different
DBD classes. However, virtually all of the plots display a
sigmoidal appearance, such that a particular threshold defines
the %AA identity over which the majority (75% or more) of pro-
tein pairs have very similar DNA binding preferences (i.e., are
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Figure 2. Motif Inference Thresholds by DBD Class

(A) Relationship between similarity in DBD AA sequence and DNA sequence preferences. Boxplots depict the relationship between the %ID of aligned AAs
and % of shared 8-mer DNA sequences with E scores exceeding 0.45, for the three DBD classes with the most PBMs in this study. Red lines indicate the median
value of each bin. Edges of the blue boxes indicate the 25th and 75th percentiles. Whiskers extend to the most extreme data points not considered outliers. Red
crosses indicate outliers. %ID bins range from 0 to 100, of size 10, in increments of five. Bottom: number of DBD pairs in each bin. Pink asterisks indicate the
precision of the corresponding bin (i.e., the fraction of protein pairs with 8-mer similarity at least as high as the 25th percentile of replicates). Horizontal line
indicates the 75% precision line used to choose the inference threshold. Vertical lines indicate AA %ID threshold (i.e., the point before the pink asterisks drop
below the horizontal line). Percentage in lower left corner indicates cross validation success rate.

(B) Relationship for all DBD classes. Boxplots for all DBD classes for which we could establish an inference threshold, depicted as in (A). DBD classes are ordered
by the number of TFs characterized in this study.

NR, nuclear receptor. See also Figures S2 and S6.
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at least as similar as the 25th percentile of replicates of the
same protein—see Experimental Procedures) (Figure 2). For ho-
meodomains, this threshold is 70% AA identity (Figure 2A),
almost exactly what we previously reported (65%) (Berger
et al., 2008).

Strikingly, such a threshold can be drawn for virtually every
DBD class (Figure 2 and Data S1). Moreover, exactly the same
trends and thresholds are observed in a leave-one-out cross
validation prediction framework, in which the high-scoring
8-mers are predicted to be identical to those of the protein
with the closest %AA identity (see Experimental Procedures).
Using this framework, we estimate that ~89% of predicted
sequence preferences (hereafter, “inferences”) above the
thresholds shown in Figure 2 are as accurate as experimental
replicates (Data S1), with similar precision obtained whether in-
ferences are derived from only orthologs (88%) or only paralogs
(90%). The distribution of DBD AA similarities among the 1,017
proteins we analyzed is nearly identical to the distribution among
all sequenced eukaryotes (data not shown), so the same
numbers can be expected for de novo predictions. Furthermore,
comparisons among PWMs (i.e., motifs) confirm these thresh-
olds, despite the potential variation contributed by motif deriva-
tion (Weirauch et al., 2013; Zhao and Stormo, 2011). To illustrate
this concept, Figure 3 depicts PBM-derived motifs obtained for
the Myb/SANT family, grouped according to the relationship of
their DBD AA sequences. Darkly shaded regions, which invari-
ably contain nearly indistinguishable motifs, indicate groups of
TFs with DBD similarity exceeding the 87.5% threshold for this
family.

We conclude that TFs with DBD AA sequence identity above
these thresholds will typically have very similar sequence spec-
ificity. As previously proposed, this presents a simple approach
for broadly predicting the sequence preferences of TFs (Alleyne
etal., 2009; Berger et al., 2008; Bernard et al., 2012; Noyes et al.,
2008): the 8-mer data, motifs, and consensus sequences can be
directly transferred from the nearest protein above the threshold
for which data are available. The data presented here encom-
pass 37 DBD classes with sufficient data (i.e., comparisons in
each of the bins in the box plots) to produce thresholds, together
representing ~85% of all known eukaryotic TFs. Until more
data are available, we propose that a threshold of 70% AA
identity (the mean, median, and mode across all DBD classes)
can be applied to the remaining DBD classes (boxplots in
Figure S2 show the aggregate of all of the classes with no
threshold).

Cis-BP: A Catalog of Direct and Inferred Sequence
Binding Preferences

Using the DBD identity thresholds generated above, we globally
assigned probable motifs (and other sequence preference data,
if available) to TFs from 290 eukaryotic genomes. To do this, we
supplemented the PBM data collected in this study with 4,234
additional published motifs (674 from PBMs and 3,560 from
other sources—see Table S1) derived from 1,850 different pro-
teins, mainly in human (623 proteins), mouse (409), fly (316), or
yeast (216). Altogether, there are experimentally determined
motifs for only 1.7% (2,750) of the 166,851 unique TFs within
these genomes. Using the thresholds determined here, it is
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possible to infer a motif for roughly one-third of all TFs encoded
by sequenced eukaryotes, bringing the total (known + inferred) to
57,165. Figures 4A and 4B summarize the coverage by DBD
class and by species (see Table S3 for all DBD classes and spe-
cies). Lineages that benefit most from the inference scheme
include vertebrates, plants, fungi, and insects, which contain
many orthologs conserved in the model species analyzed most
heavily. For example, the motif collection for zebrafish (Danio
rerio), which largely consists of inferred motifs, is as complete
as that of mouse and human (Figure 4B).

To facilitate use of the known and inferred motifs by the scien-
tific community, we created a database called catalogue of in-
ferred sequence preferences of DNA-binding proteins (Cis-BP)
(http://cisbp.ccbr.utoronto.ca). In addition to the new experi-
mental data reported here, Cis-BP contains comprehensive
8-mer binding scores, position weight matrices, and IUPAC
consensus motifs from publicly available sources (JASPAR (Por-
tales-Casamar et al., 2010), Transfac (public data only) (Matys
et al., 2006), FlyFactorSurvey (Zhu et al., 2011), FactorBook
(Wang et al., 2013), and data from 674 PBM experiments taken
from other studies (compiled in UniPROBE) (Newburger and
Bulyk, 2009).

In-Vitro-Derived Motifs Predict ChlP-Seq Peaks

To examine the relationship between in-vitro-defined motifs
(both measured and inferred) and in vivo binding sites, we
asked how well the motifs in Cis-BP predict in vivo binding,
based on ENCODE human ChIP-seq data (see Experimental
Procedures). To gauge the ability of a motif to discriminate
between real ChIP peaks (positives) and peak sequences
permuted using an algorithm that maintains all dinucleotide
frequencies (negatives), we used the area under the receiver
operating characteristic (AUROC) summary statistic, in which
perfect discrimination between positives and negatives scores
1.00 and random guessing scores 0.50. Nearly all (111) of the
114 PBM-derived motifs achieved AUROC scores exceeding
the 0.50 random expectation level in at least one ChIP data
set (Figure 5A and Table S4). Strikingly, over one-third of the
motifs (43 of 114), in a variety of DBD classes and cell types,
achieve AUROCs exceeding 0.90 in at least one ChIP data
set, including GABPA in H1-hESC cells (Ets family, AUROC =
0.99), USF2 in GM12878 cells (bHLH, 0.97), and FOS in K562
cells (bZIP, 0.97). Motifs inferred from in vitro data from related
proteins achieve AUROC values similar to those obtained using
in vitro motifs from exactly the same protein that was ChlPped
(Figure 5A). Overall, PBM-derived motifs are equally accurate as
those derived from other sources; the mean AUROCs across
the 19 TFs with at least one PBM-derived motif and one
Transfac motif are 0.834 and 0.827, respectively (Figure 5B
and Table S4), and 0.826 versus 0.831 for the 14 TFs with
both PBM and HT-SELEX-derived motifs (Figure 5C and Table
S4). The small number of cases in which motifs derived from
these other sources performed better than PBM motifs appear
to correspond to multimeric binding that was not detected in
the PBM assays. From this analysis, we conclude that there is
generally no fundamental discrepancy between motifs obtained
from different assays and between the in vivo and in vitro
sequence preferences of TFs.
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Figure 3. Overview of Myb/SANT Family Motifs

PBM-derived motifs from the Myb/SANT family (84 from this study, 13 from other studies) are shown. Tree reflects the percent of identical AAs after alignment.
Dark shading, 87.5% AA identity (standard inference threshold); light shading, >70% AA identity (relaxed inference threshold). TBF1 and DOT6 each have two

motifs because they were examined in two different studies.

Motifs Display Positional Bias in Promoters across
Eukaryotes

Enrichment and positional bias of TF motifs in promoters has
been reported in several model species and human (FitzGerald
et al., 2004; Lee et al., 2007; Marifio-Ramirez et al., 2004; Ohler
et al., 2002), and in some cases TFs appear to be involved in
determining promoter identity (de Boer et al., 2014; Megraw
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et al., 2009). However, it is unknown whether this is a general
property of eukaryotic promoters. We found that genomes
from vertebrates, plants, fungi, and protists all displayed enrich-
ment of binding sites for their TFs just upstream of the TSS,
relative to permuted sequences and also relative to unrelated
(control) motifs taken from other lineages (Figure 6). The enrich-
ment involved both directly determined and inferred motifs
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(Figure 6). Strikingly, the TF classes with motifs enriched in pro-
moters differed between lineages of organisms (Figure S3), indi-
cating that these trends either arose independently in different
lineages, or have evolved considerably in most of them. Further-
more, we found little to no correspondence between overall
motif enrichment and motif sequence composition (i.e., overall
GC-content) (Table S5), and the enrichment was observed
whether the promoters were characteristically GC-rich or AT-
rich (i.e., predicted to be nucleosome favoring or disfavoring,
respectively). We observed similar trends using a reduced set
of nonredundant motifs for each organism (Figure S4), showing
that the phenomenon is not due to expansion of a small number
of TFs families that bind promoters. These observations indicate
that, across eukaryotes, the region just upstream of the TSS typi-
cally is enriched for binding sites that may function in either pro-
moter definition or gene regulation.

Arabidopsis Expression Quantitative Trait Loci SNPs Are
Enriched for TF Binding Sites

Identifying causal genetic variants and their mechanisms of
action is a fundamental challenge in association studies. As
our data greatly expand the motif collection in the model plant
Arabidopsis, we examined a data set of expression quantitative
trait loci (eQTLs) defined from Arabidopsis genomic sequences
and matched seedling RNA sequencing (RNA-seq) taken from
19 strains (Gan et al., 2011). Among highly significant eQTLs
found within 1 kb upstream of a TSS, there was a striking enrich-
ment (>3-fold for the SNPs with strongest association) for over-
lap with TF motif matches (Figure 7A), strongly suggesting that
these SNPs impact transcription factor binding. As an example,
Figures 7B and 7C show a SNP in the promoter of the
AT5G47250 gene, in which loss of a potential binding site for
the VNI2 TF in the “A” allele correlates almost perfectly with a
dramatic increase in AT6G47250’s expression level, consistent
with the well-characterized role of VNI2 as a transcriptional
repressor (Yamaguchi et al., 2010; Yang et al., 2011). Both
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Figure 4. TF Motif Coverage

TFs with multiple protein isoforms are counted as a
single gene.

(A) Motif coverage by DBD class. DBD classes
] sorted top to bottom by number of TFs character-
ized in this study. Those with fewer than eight pro-
teins characterized in this study are grouped into
“Other.” “Other (selected)” indicates DBD classes
selected for characterization in this study. “Other
(not selected)” indicates DBD classes not charac-
terized here. “Direct” includes those experimen-
tally characterized in this study, but not previously
known. “Total inferred” excludes those experi-
mentally characterized in this or previous studies.
(B) Motif coverage by species. Tree at left,
phylogenetic relationships between organisms
(Baldauf et al., 2000).

See also Table S3.

Motif coverage (%)

VNI2 and AT5G47250 were associated

with the plant defense response to the

pathogenic oomycete H. arabidopsidis
in a recent genome-wide association study examining 107
different phenotypes (Atwell et al., 2010). Taken together,
these results suggest that VNI2 represses the expression of
AT5G47250 in a pathogen response context, a mechanism
dependent on the specific SNP present in the AT56G47250 pro-
moter region. We expect that the Cis-BP motif collection will
be useful for similar analyses in other organisms: eQTL analysis
can be performed in virtually any species for which there are mul-
tiple strains (or individuals) and does not require well-developed
genetic systems. In fact, in this analysis, a similar level of enrich-
ment was observed using only a set of 65 motifs inferred from
organisms other than Arabidopsis thaliana (Figure S5), suggest-
ing that the motif data need not be derived from the organism in
question (see also below).

Identification of TFs Affected by Disease-Associated
Genetic Variants

Recent analyses indicate that between 85% and 93% of dis-
ease- and trait-associated variants are located in noncoding re-
gions (Hindorff et al., 2009; Maurano et al., 2012), suggesting that
many might alter TF binding events. However, the identification
of specific TFs whose binding might be affected by a given
variant remains a challenging and laborious task. We devised a
system that utilizes all available PBM data to produce a ranked
list of human TFs whose binding might be affected by any given
genetic variant (see Experimental Procedures). To examine the
utility of this system for analyzing human disease-associated
variants, we collected a set of 15 SNPs whose alleles have
been experimentally demonstrated to affect the binding of a spe-
cific TF. One of these SNPs affects two TFs, bringing the total of
analyzed TF/SNP pairs to 16. Strikingly, in ten of these 16 cases,
this procedure ranked the correct TF (or a highly related TF from
the same DBD class) in the top five and often number one (Fig-
ure 7D and Data S1). We note that most of the novel high-ranking
TFs we identify have likely never been experimentally examined
and thus might also represent bona fide cases.
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In one example, a recent study implicated rs554219 in
estrogen-receptor-positive breast cancer tumors and used a
series of experiments to predict and eventually establish that
this SNP causes the differential binding of two Ets family TFs,
ELK4 and GABPA (French et al., 2013). Because rs554219
does not overlap ChIP-seq binding peaks from ENCODE or
other sources, ELK4 and GABPA were identified using a
series of EMSA competition experiments involving known
TF binding sites, a laborious process involving substantial
guesswork. Our automated computational procedure correctly
ranked ELK4 number one and GABPA number two out of
all human TFs (their EMSA data demonstrate strong and
moderate differential binding of ELK4 and GABPA, respec-
tively). The ELK4 prediction is based on an inference from the
pufferfish Tetraodon nigroviridis ELK4 protein (81% AA ID to
human ELK4), further illustrating the utility of cross-species in-
ferences. Moreover, differential binding of ELK4 to the alleles of
rs554219 can also be predicted using data inferred from
Drosophila melanogaster Ets21C (57% AA ID to human ELK4)
and Caenorhabditis elegans F19F10.1 (only 33% AA ID
to ELK4). Thus, our system (available at http://cisbp.ccbr.
utoronto.ca/TFTools.php) can accurately predict the specific
TFs whose binding is affected by risk alleles of disease-associ-
ated SNPs, even when using PBM data inferred from distantly
related organisms.
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Figure 5. PBM-Derived Motifs
In Vivo TF Binding Locations

(A) AUROC analysis, showing ability of directly
determined and inferred motifs to distinguish

Identify

100 ChIP-seq peak sequences from scrambled se-
99 - 90 quences. We identified TFs with available

-89-80 ENCODE ChlIP-seq data that also have PBM data
79-70 available either for that TF, or for related TFs
69 - 60 (based on the inference threshold for the DBD
59 - 50 class). We then gauged the ability of the PBM-
Random

derived motifs to distinguish real ChIP peaks from
scrambled sequences (maintaining all dinucleo-
tide frequencies) using the AUROC (see Experi-
mental Procedures). For each DBD class, results
are binned by DBD %AA ID (key indicated at upper
right). Numbers below each bar indicate the count
in each bin. Error bars indicate SE. “Random”
indicates results obtained with a randomly as-
signed, unrelated TF motif. Fox, Forkhead box.
NR, nuclear receptor. Figure S7 shows results
obtained using an alternative null model.

(B) Comparison of AUROC for PBM-derived motifs
and literature-derived motifs. We identified TFs
with ENCODE ChlP-seq experimental data that
also have both Transfac and PBM-derived motifs
available. For each TF, we calculated the best
AUROC obtained by any PBM or any Transfac
motif on any of the ENCODE cell line ChIP exper-
iments for that TF. For TFs with multiple motifs
from the same source, the plot shows the mean
AUROC across the motifs.

™ Sono I~

NR

1.00 (C) PBM-derived motifs versus HT-SELEX-derived
motifs. Same as for (B), but including only TFs with
motifs available both from PBMs and a recent HT-
SELEX study (Jolma et al., 2013).

See also Table S4.
DISCUSSION

We anticipate that the new data collected here—as well as the
inferred motifs across eukaryotes—will be an invaluable
resource and knowledge base for functional genomics and anal-
ysis of gene regulation. In addition to the data itself, the Cis-BP
database also contains web-based interfaces to tools for scan-
ning DNA sequences for putative motifs, reporting the TFs with
motifs similar to a given motif, predicting the motif recognized
by a given TF based on its DBD AA sequence, and identifying
TFs that will bind differentially to two different DNA sequences
(e.g., disease risk and nonrisk alleles). Cis-BP will enable dissec-
tion of regulatory mechanisms from expression data even in the
vast majority of species for which there are currently no genetic
tools.

The analyses here present a strategy to rapidly populate TF
motif collections across the eukaryotes. As we previously pro-
posed for RNA-binding proteins (Ray et al., 2013), targeting
members of the largest groups of uncharacterized proteins for
experimental analysis will allow the largest number of inferred
motifs to be obtained. Motif inference based on DBD identity
alone is only a first approximation, but it is remarkably cost
effective: the analyses described here indicate that motifs
can be inferred for 34% of all TFs, using data from only 1.7%.
We extrapolate that 1,032 additional successful experiments
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Figure 6. Positional Bias of Motif Matches in Eukaryotic Promoters
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PBM-derived PWMs (direct, top heatmap; inferred, bottom heatmap) scored in 20 bp bins, normalized to dinucleotide-permuted controls, averaged across all
promoters, and displayed as Z scores (see Experimental Procedures). Each row in the heatmap corresponds to one PWM. Rows were clustered using hierar-
chical clustering (Pearson correlation, average linkage). Summary plots at the bottom indicate the median Z score, taken across all PWMs from the indicated
species (“Real PWMs”), or across a set of PWMs from unrelated lineages (“Control PWMs”) (see Experimental Procedures).

See also Table S5 and Figures S3 and S4.

(<0.5% of all TFs and a number identical to that in this study)—
one from each of the largest groups of orthologs and paralogs
with no known motifs—would increase coverage across the
eukaryotes from 34% to 48%.

The inference scheme described here relies on the high
degree of conservation among DBDs. Indeed, our analyses
confirm the “deep homology” that has been described for meta-
zoan developmental processes and the TFs that regulate them

(e.g., homeodomains) (Berger et al., 2008; Carroll, 2008; Noyes
et al., 2008) and furthermore indicate that deep homology is a
property of the sequence preferences of many TFs in all eukary-
otic kingdoms. Our initial analyses (data not shown) suggest that
many motifs likely date to the base of metazoans, land plants,
angiosperms (flowering plants), or euteleostomi (bony verte-
brates), consistent with well-established TF expansions in these
lineages (de Mendoza et al., 2013; Weirauch and Hughes, 2011).
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Despite widespread conservation, TF repertories do change
over evolutionary time, and these changes likely shape eukaryotic
evolution (de Mendoza et al., 2013). TFs that tend to diversify,
such as the large metazoan C2H2 class (Stubbs et al., 2011),
will present an ongoing challenge to a complete characterization
of eukaryotic TF motifs. In other lineages, other classes of TFs
have expanded and diversified, including the nuclear receptor
class in C. elegans (Maglich et al., 2001), the zinc cluster/GAL4
class in fungi (Shelest, 2008), and several classes in plants
(Lang et al., 2010). The data described here confirm that the
sequence specificities of at least some of these factors have
also diversified. Mapping recognition codes represents an alter-
native approach to more complete cataloguing of TF motifs,
and the data presented here provide many new examples for
the study of TF-DNA recognition. Exceptions to the simple AA
similarity rules described here should also be informative
regarding mechanisms of sequence recognition, because they
will identify AA residues critical for DNA sequence specificity
(De Masi et al., 2011; Noyes et al., 2008). Ongoing efforts to
further the collective knowledge of TF binding specificities will
greatly advance our understanding of TF-DNA interactions, as
well as our ability to interpret the function of DNA sequences,
including understanding the functional impact of natural genetic
variants in human and other species.

EXPERIMENTAL PROCEDURES

Full details are provided in the Extended Experimental Procedures.
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Figure 7. Overlap of Predicted TF Binding
Sites with cis-eQTLs
(A) Number and percentage of Arabidopsis cis-
eQTLs overlapping motifs, as a function of eQTL
significance. Shaded region indicates one stan-
(o] dard deviation in the expected distribution (see
Experimental Procedures).
(B) A cis-eQTL affecting the expression of the
AT5G47250 gene. Boxplots (see Figure 2 legend)
indicate the median normalized gene expression
level for each allele of the cis-eQTL. “Reference”
indicates the allele present in the Arabidopsis
reference genome assembly.
(C) The same cis-eQTL “breaks” a putative binding
site for the VNI2 transcriptional repressor.
Sequence logo depicts the DNA-binding motif we
obtained for VNI2. Sequences below indicate the
reference (top) and alternative (bottom) alleles of
the cis-eQTL SNP (boxed) and its flanking bases.
(D) Prediction of human TF binding events altered
by disease risk alleles. We created a method for
using PBM data to predict TFs whose binding is
affected by disease-associated genetic variants
and applied it to 16 known examples. Shown here
are the ten cases in which we ranked the correct TF
(column labeled “exact”) or a highly related TF from
the same DBD class (column labeled “related”)
within the top five TFs. The “Event” column in-
dicates whether the risk allele results in a “Loss” or
“Gain” of binding of the TF. N/A, indicates that
PBM data are not available for the corresponding
TF; —, indicates that the TF did not receive a rank
because both alleles had an E score >0.45.
See also Figure S5.

Data Availability

PBM data are available in the Gene Expression Omnibus (GEO) database
under accession number GSE53348. PBM data, clone information, and other
data from analyses carried out in this study are available on the project web
site: http://hugheslab.ccbr.utoronto.ca/supplementary-data/CisBP/. Addi-
tional data (including 8-mer scores, PWMs, sequence logos, and information
on TFs) are found on the CisBP web server (http://cisbp.ccbr.utoronto.ca/).

Selection, Cloning, and PBM Analysis of TFs

We compiled the predicted proteomes of 290 eukaryotic organisms from a
variety of sources and supplemented them with an additional 49 known TFs
from organisms without fully sequenced genomes. We scanned all protein se-
quences for putative DNA-binding domains (DBDs) using the 81 Pfam (Finn
et al., 2010) models listed in Weirauch and Hughes (2011) and the HMMER
tool (Eddy, 2009). Each protein was classified into a family based on its
DBDs and their order in the protein sequence. We selected 2,913 individual
TFs to analyze, using several different criteria, including a relatively even bal-
ance among DBD classes and species, a survey of different levels of sequence
identity among proteins, and a deeper focus on several model organisms and
abundant DBD classes. For most constructs, we designed primers to clone the
region encompassing all DBDs plus the 50 flanking endogenous AAs on either
side (or until the termini of the protein) by conventional PCR methods into one
of a panel of T7-GST vectors for expression in E. coli (referred to hereafter as
“plasmid constructs”). PBM laboratory methods were identical to those
described in Lam et al. (2011) and Weirauch et al. (2013). Each plasmid was
analyzed in duplicate on two different arrays with differing probe sequences
(denoted “ME” and “HK?”). Calculation of 8-mer Z and E scores was performed
as previously described (Berger et al., 2006). To obtain a single representative
motif for each protein, we used a procedure similar to a recent study from our
group in which we generated motifs for each array using four different algo-
rithms and chose the best-performing single motif based on cross-replicate
array evaluations (Weirauch et al., 2013).



Inference Scheme

We established a separate inference threshold for each DBD class. We first
aligned the DBD sequences of all constructs within a DBD class using
clustalOmega (Sievers et al., 2011). We then calculated the AA %ID for all
construct pairs (i.e., the number of identical AAs in the alignments). Within
each DBD class, we grouped all PBM construct pairs into bins, based on AA
%ID. We used overlapping bins of size 10, ranging from 0 to 100, increasing
by 5. We calculated the precision of each bin by comparing the DNA sequence
preferences obtained from all characterized protein pairs contained in the bin.
We quantified the similarity of the DNA sequence preferences of two proteins
as the fraction of shared high-scoring 8-mers. We considered a prediction to
be correct only if this fraction exceeded the value obtained at the 25th percen-
tile of experimental replicates (i.e., the fraction of shared 8-mers between ME
and HK arrays for the same protein). The proportion of predictions scored as
correct (i.e., precision) for each bin of each DBD class is shown as magenta
stars in Figure 2 and Data S1.

We chose inference thresholds for each DBD class based on the precision
scores of each AA %ID bin. Because we used the 25th percentile threshold
to define precision, we would expect a precision of 0.75 or higher in each
AA %ID bin. We therefore chose an inference threshold for each DBD class
by identifying the final AA %ID bin before precision drops below 0.75 (vertical
bars in Figure 2). Similar thresholds were obtained regardless of the E and Z
score 8-mer thresholds used and also regardless of the replicate overlap
percentile considered (i.e., 25th percentile, requiring 0.75 precision or 20th
percentile, requiring 0.80 precision) (Figure S6). The final threshold for a
DBD class was chosen as the median threshold across the eight 8-mer simi-
larity measures (see Figure S6 and Data S1). We found this scheme to be
appropriate for most DBD classes (all of which are depicted in Figure 2). For
three DBD classes (IRF, CXXC zinc fingers, and Dof zinc fingers), we could
not establish a threshold —these therefore received a threshold of 100%. We
used a threshold of 40% for AT-hook TFs, which recognize AT-rich sequences,
based on manual inspection of the data (see Data S1). For the remaining
classes, with suggestive but insufficient data, we chose a threshold of 70%,
which is the mean, median, and mode threshold across all DBD classes.

We used the AA %ID of all pairs of proteins to infer motifs, 8-mer scores, and
consensus sequences within each DBD class by simple transfer (i.e., aligning
the DBD sequences of all proteins and all constructs in a given DBD class, as
described above, and calculating the AA %ID of each protein with each
construct). We also evaluated the effectiveness of our inference scheme in a
leave-one-out cross validation framework, in which the PBM data for each
characterized protein was held out and compared to the PBM data of its near-
est neighbor (i.e., the characterized protein with highest AA %ID), using a
similar scoring scheme to that used to calculate the precisions.

Comparison to ChiP-Seq Data

We calculated AUROC scores on real and permuted (maintaining dinucleotide
frequencies) ChlP-seq peak sequences following Weirauch et al. (2013). We
obtained ENCODE consortium human ChlP-seq data from the UCSC Genome
Browser (Rosenbloom et al., 2012). For each ChlIP experiment, we extracted
the top 500 scoring peak region sequences and scored them (and the
permuted sequences) using all direct and inferred PWM models for the given
TF. For each PWM/experiment pair, we then calculated the AUROC using
these sets of 500 positives and 500 negatives. Similar results were obtained
using a negative set consisting of ChIP-bound peaks from unrelated TFs
with matched GC-content (Figure S7).

Positional Bias of Motifs in Eukaryotic Promoters

We obtained the 1,000 bases upstream of transcription start sites (or, if unavai-
lable, translation start sites) and scored the PWMs of each organism at each
position. We then placed the resulting scores into 20 bp bins, summed the
scores for each bin, and took the average across all promoters for the given
species for each bin. To correct for mono- and dinucleotide biases, we also
scored shuffled promoter sequences, which were created by shuffling the se-
quences within each 20 bp bin (while maintaining dinucleotide frequencies).
For each PWM, we then calculated the ratio of each bin’s real score relative
to the score of the shuffled sequence. The resulting ratios were then normal-
ized across all bins for the given PWM using a standard Z score transformation.
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We also calculated Z scores for a negative control set of TF PWMs for each
organism, consisting of a collection of random motifs from species in other
clades that were unrelated to any PWM from the given species.

Arabidopsis eQTL Analysis

We used a publicly available data set (Gan et al., 2011) containing genome-
wide RNA-seq variance-stabilized expression levels (Huber et al., 2002) taken
from 19 strains of seedling Arabidopsis thaliana and matching genome se-
quences. We identified matches to each A. thaliana PWM within the 1,000
bases upstream of each TSS. We calculated the percentage of genetic vari-
ants that affect these putative binding sites, as a function of the cis-eQTL
p value of the variant (red line, Figure 7). We also created a null distribution
(blue line and blue shaded region, Figure 7) to exclude the possibility that
the observed percentages might solely be due to the higher density of TF bind-
ing sites in promoter regions.

Human Disease SNP/TF Analysis

We devised a system for utilizing our collection of PBM data to identify candi-
date human TFs whose binding might be affected by the allelic sequences of
genetic variants. In this system, we score each variant (along with its flanking
genomic bases) using 8-mer E scores taken from the 3,132 PBM experiments
contained in our database. For each PBM experiment, we identify the highest
scoring 8-mer E score attained by any of the risk allele sequences (E,;s,) and the
highest attained by any nonrisk allele (E,onrisk).- We then identify all PBM exper-
iments where only one of E;sx and E,onisx has an E score value exceeding 0.45
(values above this threshold will likely be strongly bound by the given TF
(Berger et al., 2008)) and map these experiments to human using the inference
scheme. This procedure thus produces a ranked list of human TFs whose
binding is likely to be affected by the alleles of a given SNP (e.g., strongly bind-
ing to one allele but not binding to the other).

ACCESSION NUMBERS

The Gene Expression Omnibus (GEO) accession number for the PBM data re-
ported in this paper is GSE53348.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven
figures, six tables, and one data file and can be found with this article online at
http://dx.doi.org/10.1016/j.cell.2014.08.009.
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SUMMARY

To exert regulatory function, miRNAs guide Argo-
naute (AGO) proteins to partially complementary
sites on target RNAs. Crosslinking and immunopre-
cipitation (CLIP) assays are state-of-the-art to map
AGO binding sites, but assigning the targeting
miRNA to these sites relies on bioinformatics predic-
tions and is therefore indirect. To directly and unam-
biguously identify miRNA:target site interactions, we
modified our CLIP methodology in C. elegans to
experimentally ligate miRNAs to their target sites.
Unexpectedly, ligation reactions also occurred in
the absence of the exogenous ligase. Our in vivo
data set and reanalysis of published mammalian
AGO-CLIP data for miRNA-chimeras yielded
~17,000 miRNA:target site interactions. Analysis of
interactions and extensive experimental validation
of chimera-discovered targets of viral miRNAs sug-
gest that our strategy identifies canonical, non-
canonical, and nonconserved miRNA:targets. About
80% of miRNA interactions have perfect or partial
seed complementarity. In summary, analysis of
miRNA:target chimeras enables the systematic,
context-specific, in vivo discovery of miRNA binding.

INTRODUCTION

miRNAs associate with Argonaute (AGO) proteins to guide the
RNA-induced silencing complex (RISC) to transcripts and
thereby repress protein production of target mRNAs (Baek
et al.,, 2008; Bartel, 2009; Fabian et al., 2010; Selbach et al.,
2008). Consequently, the biological role of a miRNA is mainly
specified by its set of targets. Identifying miRNA targets remains
challenging because, in animals, a miRNA typically has hun-
dreds of direct targets under negative selection (Brennecke
et al., 2005; Krek et al., 2005; Lewis et al., 2005; Xie et al.,
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2005), and target recognition occurs through only partial
sequence complementarity (Bartel, 2009; Rajewsky, 2006). Of
particular importance to target recognition is the miRNA seed
seqguence, i.e., nucleotides (nt) 2-7 from the 5’ end of the miRNA
(Bartel, 2009; Lewis et al., 2005; Lai, 2002; Rajewsky, 2006).
Perfect complementarity to the seed is often found to be funda-
mental for binding and a regulatory response. However, in
addition to these canonical binding sites, numerous noncanoni-
cal miRNA target sites have been reported (Bagga et al., 2005;
Chi et al., 2012; Didiano and Hobert, 2006; Helwak et al., 2013;
Lal et al., 2009; Shin et al., 2010; Vella et al., 2004). The base-
pairing patterns for noncanonical targets are not well understood
due to difficulties in their identification.

Conventional approaches to identify miRNA targets
commonly aim to detect perfect seed matches in 3’ UTRs, often
by incorporating additional information, such as conservation,
accessibility, and expression of 3' UTR sequences. Despite
the general success of these methods, they do not take into
account context specificity, such as binding sites masked by
other RNA binding proteins (RBPs) or tertiary structure con-
straints, and are not effective at identifying noncanonical or
nonconserved sites. Moreover, false positive rates are often
high unless specificity is boosted at the expense of sensitivity.

Recently, crosslinking and immunoprecipitation (CLIP)
methods (Chi et al., 2009; Hafner et al., 2010; Lebedeva et al.,
2011) have identified AGO binding sites at a transcriptome-
wide scale, generating context-dependent AGO binding maps.
These data per se do not reveal the identity of the miRNA(s)
bound to a certain site. Therefore, tools have been developed
to computationally predict which miRNAs are bound at which
AGO sites (Erhard et al., 2013; Khorshid et al., 2013; Liu et al.,
2013; Majoros et al., 2013). However, assumptions must be
made, such as which miRNAs are loaded into AGO, how miRNAs
recognize targets, and regarding the validity of biophysical en-
ergy or hidden Markov or logistic models. It is therefore still diffi-
cult to confidently and unambiguously assign which miRNA was
bound to a certain site, especially for sites containing none or
several different seed matches. The identification of miRNA:tar-
gets can be further complicated by sequence similarities
between miRNAs. For example, viral miRNAs can share seed
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sequences with human miRNAs and thus can interfere with
human miRNA binding in infected cells (Gottwein et al., 2011;
2007; Manzano et al., 2013; Skalsky et al. 2007; 2012; Zhao
etal., 2011).

We set out to complement existing approaches by experi-
mental miRNA:target identification. We recently developed
iPAR-CLIP, a biochemical method to generate in vivo maps of
binding sites for RBPs in C. elegans (Jungkamp et al., 2011).
Here, we used iPAR-CLIP and mapped 29,000 unique AGO
binding sites in the worm, improving resolution and depth of pre-
vious studies (Zisoulis et al., 2010). Additionally, we experimen-
tally ligated miRNAs to their binding sites. Our method is similar,
but not identical, to the CLASH protocol recently applied
in a human cell line (Helwak et al., 2013). Sequencing and
computational analysis of these chimeras revealed thousands
of miRNA:targets in C. elegans. Unexpectedly, we also detected
thousands of chimeras when no ligase was added, indicating
endogenous RNA ligase activity in standard CLIP assays.
Indeed, by reanalyzing sequencing data from published AGO-
CLIP experiments, we succeeded in compiling >13,000 human
and mouse miRNA:targets.

We present multiple lines of evidence that these miRNA:
targets have features expected from functional interactions.
We also tested the functionality of miRNA:targets for viral
miRNAs. With the exception of a viral miRNA with poor targeting
proficiency (Garcia et al., 2011; Manzano et al.,, 2013), we
confirmed regulation for 87% of tested sites, including nonca-
nonical and nonconserved sites. Computational analyses of
our chimera-identified miRNA:targets suggest that ~80% of
these interactions have statistically highly significant perfect or
imperfect (1 nt mismatch) complementarity to the miRNA seed
(nt 2-7). Our data further suggest that mismatches in the seed
occur predominantly at positions 2 and 7. Thus, AGO-CLIP
sequencing data contain chimeric reads that enable the identifi-
cation of endogenous, context-specific miRNA:targets on a tran-
scriptome-wide scale. These data allow insights into principles
by which miRNA recognize target sites.

RESULTS

Identification of 3,600 miRNA:Targets in C. elegans
We adapted our iPAR-CLIP protocol (Jungkamp et al., 2011) to
ligate miRNAs to target sites in C. elegans (Figure 1A). Briefly,
worms incorporated photoreactive 4-thiouridine nucleosides
(4sU) into their RNA, which crosslinks to bound proteins dur-
ing UV irradiation. After homogenization, the lysate was treated
with RNase T1. Argonaute ALG-1 was immunoprecipitated,
and bound RNAs were treated again with RNase, recovered
under stringent conditions, and deep sequenced (Figures S1A
and S1B available online; Experimental Procedures). For the
miRNA:target ligations, we added T4 RNA ligase to immunopuri-
fied and washed AGO complexes. To prevent circularization, we
prepared the RNA ends, leaving the 3’ end of target sites blocked
(Figure S1C). Thus, T4 RNA ligase solely connects the 3" hydroxyl
(8" OH) of full-length miRNAs with the 5’ ends of target RNA
fragments.

In addition to two standard AGO iPAR-CLIP samples,
we generated two biologically and technically independent
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replicates of ligation samples and control samples. Control
samples were generated without the addition of a ligase. Bio-
informatic analysis (Experimental Procedures) of the standard
AGO iPAR-CLIP, the ligation, and the control samples identified
the presence of a total of 13.5 million nonchimeric reads, which
had an average read length of 32 nt and mapped uniquely to the
transcriptome. In PAR-CLIP, the frequency of T-to-C conver-
sions in reads reflects the RNA-protein crosslink efficacy. This
frequency was very high (14:1) in nonchimeric reads compared
to all other possible nucleotide changes.

These data defined a high-resolution AGO binding map (Fig-
ure S2A) that includes 2,286 C. elegans AGO sites previously
identified (Zisoulis et al., 2010: 4,806 unique target sites in
3,093 genes, average length 122 nt; present study: unique
29,000 sites in 8,339 genes, average length 42 nt; Table S3).
Our bioinformatics analyses (Experimental Procedures) revealed
the presence of thousands of miRNA-chimeric reads in the liga-
tion samples (Figure 1B). When mapping the target sequence in
chimeras to the transcriptome, the vast majority mapped to 3’
UTRs. Moreover, almost all target sites fell precisely into AGO
binding sites (Figure S1D). Consequently, we mapped chimera
target sequences directly to AGO sites. This increased the sensi-
tivity of target recovery due to the smaller search space (Exper-
imental Procedures). In total, we identified 3,627 miRNA:targets
for C. elegans (Table S3), 677 of which were supported by more
than one chimeric sequence read. Interactions supported by one
read showed essentially the same features as interactions recov-
ered by >1 read (see below; Figures S1E and S1F).

Control Samples Also Contain miRNA:Target Chimeras
Unexpectedly, we detected substantial numbers of chimeras in
our control samples as well as in our AGO iPAR-CLIP samples.
These samples have not been treated with T4 RNA ligase to
generate chimeras (Figure 1C). While ligation samples had
miRNA:target chimeras containing complete or truncated
miRNAs, nearly all chimeras detected in control and AGO
iPAR-CLIP samples contained 3'-truncated miRNA sequences
(Figures 1C, S1G, and S1H).

Truncated miRNAs were strongly enriched in a guanine imme-
diately upstream of the cleavage sites in miRNAs and target
RNAs (Figure 1D). RNase T1 cuts with high preference after
guanines, strongly suggesting that RNase T1 produced the
ends used as substrates for this ligation reaction. The ligation
activity required for ligation of 2/,3'-cyclic P (can convert into
3'P) is present in eukaryotic cell lysates, as previously reported
(Filipowicz et al., 1983; Martinez et al., 2002; Perkins et al.,
1985) (Figure 1E).

Could RNAs in the lysate randomly ligate to AGO-loaded
miRNAs? Bacteria are the food source for C. elegans. Therefore,
iPAR-CLIP sequencing data usually contain a substantial frac-
tion of bacterial sequences (~30%). In contrast, less than 2%
of recovered iPAR-CLIP chimeras contained C. elegans miRNAs
together with bacterial sequences, indicating that ligation of
random RNA fragments to AGO-loaded miRNAs occurred only
rarely. Moreover, miRNA:targets from different samples were
highly overlapping (Figure S1l). The majority (76%) of interac-
tions derived from chimeras with complete miRNAs were also
identified from chimeras with truncated miRNAs (Figure S1J),
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Figure 1. Generation of miRNA:Target Chimeras via Different Types of Ligations in C. elegans

(A) C. elegans RNA labeled with photoreactive nucleoside 4-thiouridines (4sU) is crosslinked to bound proteins in vivo. After homogenization of worms, the lysate
is treated with RNase T1. Some miRNAs are shortened, and others remain complete. Following immunoprecipitation (IP) and washing of AGO, crosslinked RNA is
phosphorylated by a PNK variant (leaves 3’ ends blocked) and treated with T4 RNA ligase, which ligates the 3'-hydroxyl end of complete miRNAs to bound RNA
fragments. Crosslinked RNA is recovered and deep sequenced. Computational analysis detects sequence reads of miRNAs and AGO binding sites, along with
chimeric reads containing miRNAs connected to their targets.

(B) Example of a miRNA interaction recovered from chimeric reads. Predicted reconstruction of the miRNA:target duplex. Green, miRNA sequence; blue, target
sequence; red, T-to-C conversion.

(C) Data from the ligation sample contain chimeras with 3’ truncated (length of miRNA sequence > 13 nt) and with complete miRNAs. A comparable fraction of
chimeras with truncated miRNAs was also found in a control sample, to which no ligase was added to generate chimeras.

(D) miRNA and target ends involved in the ligations of the control sample are highly enriched in an upstream G, suggesting that RNase T1 generated the ends used
for this type of ligation.

(E) Truncated miRNAs are ligated by the ligase activity of the lysate during IP.

(F) The majority (89%) of chimera-derived miRNA target sites (mapped to the transcriptome) overlap with AGO binding sites generated from nonchimeric reads.

See also Figure S1.

suggesting the recovery of in vivo interactions for both ligation
reactions. Together, these findings prompted us to systemati-
cally analyze the ~3,600 identified C. elegans miRNA:target
site interactions jointly for known features of miRNA targeting.

C. elegans miRNA:Targets Recovered from Chimeras
Have Features Characteristic of miRNA Binding

C. elegans miRNA:target chimeras mapped mainly to 3’ UTRs
and coding sequences (Figure S2A), similar to AGO binding
sites. Also, the sequences ligated to miRNAs are bona fide
AGO sites since 89% of mapped chimeras overlapped by at
least 80% of their length with AGO binding sites, which is highly
statistically significant (p ~0, Figure 1F). Consistently, targets in
miRNA-chimeras had a T-to-C conversion rate of 84%, enriched
20-fold over any other type of nucleotide change (Figure S2B).
This crosslink-specific signal indicates that sequences ligated
to complete or truncated miRNAs were bound by AGO.

We next analyzed if targets found in miRNA chimeras have
sequence complementarities to the ligated miRNA. We screened
for perfect (non-G:U) complementarity to miRNA nt 2-7 (seed),
complementarity to miRNA nt 2-7 containing one mismatched
or bulged nucleotide, and complementarity to miRNA nt 2-8
containing two mismatches. Together, these modes were
detected in ~80% of interactions and are highly significantly
enriched compared to random controls (Figure 2A).

We analyzed miRNA:target hybridization with RNAhybrid
(Rehmsmeier et al., 2004). The median free energy was lower
(by 3.3 kcal/mol or ~2-3 hybridized nt) for miRNA:targets
compared to controls (Figure S2C). Base pairing was as ex-
pected for miRNA (Wee et al., 2012; Khorshid et al., 2013): clearly
preferred in the seed while reduced at positions 9, 10, and 11
(Figure 2B).

As for interactions with perfect seed matches, analysis
of miRNA:targets without detected seed complementarities
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Figure 2. C. elegans miRNA:Targets (3,600) Derived from Chimeras Reflect Endogenous miRNA Targeting
(A) Target RNAs were analyzed for complementarity to the seed region of their ligated miRNAs. Approximately 80% of interactions possess the tested
complementarities. Shuffled sequences (dinucleotides in target sequences are permuted) served as control. mm, mismatch. Mismatches were broadly

distributed over all types of nucleotides, including G:U.

(B) Hybridization profile summarized over all interactions. The predicted frequency of a miRNA position to be base paired is plotted along the miRNA length.
Duplex structures of miRNA:targets were predicted by RNAhybrid, allowing G:U pairing. Shuffled sequences (dinucleotides in target sequences are permuted)
and shuffled interactions (targets are swapped between miRNAs) served as control.

(C) Target sites derived from miRNA-chimeras are found ligated to miRNAs of the same family more often than expected by chance (p < 0.0001). Shuffling target

sites between miRNA families served as control.

(D) Local frequency of crosslink-induced T-to-C conversions in target RNAs from interactions with a perfect 2-7 seed match (normalized to local thymidine
frequency). Nucleotides hybridized to the seed of the miRNA are strongly indisposed to crosslink with the protein. See also Figure S2.

revealed direct evidence for crosslinking (T-to-C conversions,
Figure S2D). However, their binding free energy was decreased
less (Figure S2E), and hybridization profiles did not indicate
enriched base pairing within the seed region (Figure S2F).

Since miRNA family members have the same seed, they are
expected to share some of their targets, and indeed, target sites
were ligated to members of the same miRNA family much more
often than expected by chance. Thus, chimeras can capture
multiple endogenous miRNA targeting events at the same target
site (Figure 2C, p < 0.0001).

An increased T-to-C conversion frequency directly upstream
of seed matches was previously reported for AGO PAR-CLIP
data (Hafner et al., 2010; Kishore et al., 2011). Similarly, miRNA:
targets with a perfect or imperfect seed match showed clear
conversion patterns, with the highest number of conversions
at the second position upstream and a strong depletion within
seed matches (Figures 2D and S2G). Interestingly, miRNAs
found in ligation products had a 3-fold lower T-to-C conversion
rate compared to nonligated miRNAs (Figure S2H). This
is because noncrosslinked miRNAs tend to be lost under the
denaturing conditions of protein purification, while ligated, non-
crosslinked miRNAs can pass purification due to their covalent
connection to AGO.

Molecular Cell 54, 1042-1054, June 19, 2014 ©2014 Elsevier Inc.

Published Mammalian AGO-CLIP Data Contain Ligated
miRNA:Targets

If, in our C. elegans experiments, ligated miRNA:targets
are generated through a ligation activity naturally present in
the lysate, then existing AGO-CLIP data should also contain
miRNA:targets. Therefore, we searched for miRNA-chimeras
in published AGO-CLIP data sets across several model
systems and CLIP methods, such as HITS-CLIP (high-
throughput sequencing of RNA isolated by crosslinking
immunoprecipitation; Chi et al., 2009) and PAR-CLIP (Photo-
activatable-ribonucleoside-enhanced crosslinking and immu-
noprecipitation; Hafner et al., 2010) (Table 1; Figure S6;
Experimental Procedures). Our pipeline confidently detected
miRNA sequences of 13 nt and longer and mapped targets
as short as 16 nt with an estimated false discovery rate
(FDR) < 5%. This sensitivity was essential for analysis since
AGO-CLIP sequences from published studies were typically
short (16-36 nt).

In total, we recovered ~11,000 human miRNA:targets, ~2,000
mouse miRNA:targets, ~500 for Kaposi’s sarcoma-associated
herpesvirus (KSHV) miRNAs, and ~300 for Epstein-Barr
virus miRNAs. As expected, most chimeras (>80%) contained
3'-truncated miRNAs. Numbers of miRNA:targets varied strongly
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