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Foreword

We are pleased to introduce the latest edition of Cell Press Selections. These editorially curated 

reprint collections highlight a particular area of life science by bringing together articles from the Cell 

Press journals. In this selection, we present recent insights into chromatin immunoprecipitation (ChIP) 

technologies.

Interactions between proteins and DNA are essential to life. These interactions mediate transcription, 

DNA replication, recombination, and DNA repair, processes central to the biology of every organism. 

To begin understanding the crosstalk between DNA and proteins, an early report in 1978 demonstrated 

chromatin crosslinked with formaldehyde, preserving DNA-protein and protein-protein interactions 

(Jackson, 1978, Cell).  A few years later, the Lis and Varshavsky labs added an immunoprecipitation 

step with specific histone antibodies to capture these protein-DNA complexes crosslinked via UV or 

formaldehyde, moving this technology forward with their seminal publications describing ChIP (Lis, 

1984, Proc. Natl. Acad. Sci. USA; Varshavsky, 1988, Cell).  Following these pioneering reports, ChIP 

has been extensively developed and refined, with improved variations on this methodology continually 

arising.  

We hope that you will enjoy reading this collection of articles and will visit www.cell.com to find other 

high-quality research and review articles touting the uses of ChIP technology.

Finally, we are grateful for the generosity of Bethyl Laboratories, who helped to make this reprint 

collection possible.

For more information about Cell Press Selections:
Gordon Sheffield

Program Director, Cell Press Selections

g.sheffield@cell.com

617-386-2189
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SUMMARY

JARID2 is an accessory component of Polycomb
repressive complex-2 (PRC2) required for the dif-
ferentiation of embryonic stem cells (ESCs). A role
for JARID2 in the recruitment of PRC2 to target
genes silenced during differentiation has been put
forward, but the molecular details remain unclear.
We identified a 30-amino-acid region of JARID2
that mediates interactions with long noncoding
RNAs (lncRNAs) and found that the presence
of lncRNAs stimulated JARID2-EZH2 interactions
in vitro and JARID2-mediated recruitment of PRC2
to chromatin in vivo. Native and crosslinked RNA
immunoprecipitations of JARID2 revealed that
Meg3 and other lncRNAs from the imprinted Dlk1-
Dio3 locus, an important regulator of development,
interacted with PRC2 via JARID2. Lack of MEG3 ex-
pression in human induced pluripotent cells altered
the chromatin distribution of JARID2, PRC2, and
H3K27me3. Our findings show that lncRNAs facili-
tate JARID2-PRC2 interactions on chromatin and
suggest a mechanism by which lncRNAs contribute
to PRC2 recruitment.

INTRODUCTION

Polycomb group (PcG) genes are key epigenetic regulators in

multicellular organisms, as they maintain transcriptional repres-

sion of lineage-specific genes throughout development, thus

contributing to the stability of cell identity (Schwartz and Pirrotta,

2007). All mammalian PcG protein complexes identified so far

perform their epigenetic function by acting on chromatin (Lan-

zuolo and Orlando, 2012); in particular, the Polycomb repressive

complex 2 (PRC2) is responsible for di- and trimethylation of

lysine 27 in histone H3 (H3K27me2/3) (Margueron and Reinberg,

2011), a hallmark of facultative heterochromatin (Trojer and

Reinberg, 2007).

One of the outstanding questions regarding mammalian PRC2

function is that of specificity of action: how are certain genes

selected for repression while others are unaffected? How can

the same molecular machinery silence different genes in dif-

ferent cell lineages? Because none of the core components of

PRC2 (EZH2, EED, SUZ12, RBBP4/7) possess a DNA binding

domain (Margueron and Reinberg, 2011), it is believed that chro-

matin targeting must be specified elsewhere, by interactions

with DNA-binding factors (Boulay et al., 2012; Kim et al., 2009),

preexisting histone methylation (Margueron et al., 2009), chro-

matin-associated long noncoding RNAs (lncRNAs) (Rinn et al.,

2007; Tsai et al., 2010), or a combination thereof (Margueron

and Reinberg, 2011).

One essential factor for proper recruitment of PRC2 during the

early phases of embryonic stem cell (ESC) differentiation is the

Jumonji family, ARID domain-containing protein JARID2 (Land-

eira et al., 2010; Li et al., 2010; Pasini et al., 2010; Peng et al.,

2009; Shen et al., 2009), which is often deleted in chronic

myeloid malignancies (Puda et al., 2012). In the absence of

JARID2, PRC2 is recruited late and incompletely to its target

genes and its enzymatic function is diminished (Li et al., 2010;

Son et al., 2013), which results in failure to follow the differentia-

tion program. Although JARID2 target sites are enriched for

CGG- and GA-containing sequences (Peng et al., 2009), its

DNA binding preferences lack the specificity to explain its distri-

bution on chromatin (Li et al., 2010). Therefore, the nature of the

recruitment pathway for JARID2 and the mode by which JARID2

regulates downstream steps of PRC2 assembly and function

remain unclear.

Noncoding RNAs have been implicated in the regulation of

epigenetic pathways, from early work on the lncRNA Xist in

X chromosome inactivation (Brockdorff et al., 1992; Brown

et al., 1992) and antisense transcripts in imprinted loci (John

and Surani, 1996) to the more recent discovery of HOTAIR

(Rinn et al., 2007) and its proposed role as a scaffold for chro-

matin-modifying ‘‘supercomplexes’’ (Tsai et al., 2010). Mamma-

lian genomes contain thousands of lncRNAs (Guttman et al.,

2009), most of which remain functionally uncharacterized.

Because of their large size, potential for tertiary structure forma-

tion, and ability to form sequence-specific interactions with DNA,

lncRNAs appear well suited to exchange information between
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chromatin-modifying complexes and the genomic sequence

(Bonasio et al., 2010; Rinn and Chang, 2012). Polycomb repres-

sive complex-1 (PRC1), PRC2, and the MLL complex interact

with the lncRNAs ANRIL, HOTAIR, and HOTTIP, respectively,

and these interactions facilitate their recruitment to chromatin

(Rinn et al., 2007; Wang et al., 2011; Yap et al., 2010). How-

ever, the molecular details and downstream consequences of

these RNA-protein interactions remain poorly understood. For

example, the RNA-binding activity of PRC2 has been attributed

to both EZH2 (Kaneko et al., 2010; Zhao et al., 2010) and

SUZ12 (Kanhere et al., 2010), and, in unbiased analyses, large

portions of the transcriptome were reported to bind to PRC2

(Kaneko et al., 2013; Khalil et al., 2009; Zhao et al., 2010), raising

the question of how specificity is achieved in vivo.

Here, we show that the PRC2 accessory subunit JARID2 binds

to lncRNAs in vivo and in vitro and that its interaction with MEG3,

an lncRNA encoded by the imprinted DLK1–DIO3 locus, is

necessary for proper recruitment and assembly of PRC2 at a

subset of target genes in pluripotent stem cells.

RESULTS

JARID2 Binds to RNA In Vitro
Despite a requirement for JARID2 during development (Takeuchi

et al., 1995) and its key role in PRC2 recruitment and function

A

B

C

Figure 1. Identification of the RNA-Binding

Region of JARID2

(A) Domain organization of human JARID2 and

scheme of the 6xHis-fused truncations utilized in

the mapping experiments.

(B) In vitro streptavidin pull-down after incuba-

tion of increasing concentrations of the indicated

JARID2 recombinant fragments with biotinylated

HOTAIR1–333. Input, 2 mg; titration, 2 and 4 mg.

(C) High-resolution mapping of the residues of

JARID2 necessary for RNA binding in vitro. The

two indicated fragments (right) were incubated

with HOTAIR1–333 and assayed as in (B). Input,

2 mg; titration, 1, 2, and 4 mg.

See also Figure S1.

during differentiation of mouse ESCs (Li

et al., 2010; Pasini et al., 2010; Peng

et al., 2009; Shen et al., 2009), the mech-

anisms by which JARID2 is targeted to

chromatin and orchestrates PRC2 func-

tion remain poorly understood. Given

that several PcG and PcG-associated

proteins interact with lncRNAs, which in

some cases regulate their recruitment to

chromatin (Kanhere et al., 2010; Rinn

et al., 2007; Yap et al., 2010), and based

on our own preliminary observations

in vitro (Kaneko et al., 2010), we hypothe-

sized that lncRNAs might also regulate

the function of JARID2.

We previously mapped an RNA-bind-

ing region (RBR) of EZH2, a core compo-

nent of PRC2, and found that phosphorylation of a threonine

within that region stimulated binding to lncRNAs (Kaneko

et al., 2010). We performed similar in vitro RNA-binding

assays on JARID2 using a bait spanning nucleotides 1–333 of

HOTAIR, a lncRNA that regulates PRC2 function (Tsai et al.,

2010), and detected an affinity for RNA within an internal frag-

ment of JARID2, but not in the N-terminal or C-terminal regions

(Figures 1A and 1B). Further mapping experiments revealed

that the deletion of residues 332–358 resulted in a severe

decrease of RNA binding in vitro (Figure 1C; Figures S1A and

S1B available online). The sequence spanning these residues

is conserved strongly in vertebrates (Figure S1C), but only

very weakly with Drosophila (Figure S1D), suggesting that

JARID2 may have acquired an additional layer of regulation in

vertebrates.

JARID2 binds to EZH2, the catalytic component of PRC2 (Mar-

gueron and Reinberg, 2011) and stimulates its histone methyl-

transferase activity (Li et al., 2010; Son et al., 2013). These

functions require the same internal fragment that contains the

RBR (Figure S1E) but can be uncoupled from the latter, given

that deletion of residues 332–358 did not affect the ability of

JARID2 to interact with PRC2 in vivo (Figure S1F) or to stimulate

its enzymatic activity (Figure S1G), whereas the 349–574 frag-

ment did not bind to RNA (Figure S1A) but retained the ability

to interact with nucleosomes (Figure S1E) (Son et al., 2013).
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Therefore, although partially overlapping regions of JARID2 are

required for these various functions, the only activity that we

could uniquely attribute to the 332–358 fragment is that of bind-

ing RNA in vitro. Henceforth, wewill refer to these residues as the

RBR of JARID2 and to the mutant protein lacking these residues

as JARID2DRBR.

JARID2 and EZH2 Bind to lncRNAs In Vivo,
Including Meg3
To determine whether JARID2 makes direct contacts with

RNA in vivo, we utilized the photoactivatable-ribonucleoside-

enhanced crosslinking and immunoprecipitation (PAR-CLIP)

technique, which crosslinks RNA that has incorporated 4-thiour-

idine (4-SU) to proteins in vivo (Hafner et al., 2010). Consistent

with our hypothesis, we detected a strong PAR-CLIP signal in

immunoprecipitations (IPs) with our JARID2 antibody (Li et al.,

2010) in extracts from embryonic day 14 (E14) ESCs (Figure 2A).

These IPs were conducted in presence of 2% lauryldimethylbe-

taine, a zwitterionic detergent that almost completely abolished

the PRC2-JARID2 interaction while preserving antibody reac-

tivity (Figure 2B). Furthermore, the radioactive signal we ob-

served must have originated from RNA crosslinked to JARID2,

because it was dependent on the incorporation of 4-SU and

was erased by treatment with increasing concentrations of

RNase and by Jarid2 knockdown (Figure 2C).

To identify the RNAs bound to JARID2 in vivo, we excised 32P-

labeled bands from the PAR-CLIP membranes (Figure 2D),

eluted the crosslinked RNA, and sequenced it. In addition to

the major, full-length band, we excised a faster migrating band

that also reacted with JARID2 antibodies in WT but not in

Jarid2�/� cells (data not shown). We obtained 90,000–200,000

unique CLIP tags in each replicate and analyzed their distribu-

tion using the PARalyzer software, which takes advantage of

the T/C transitions caused by 4-SU crosslinking to discrimi-

nate signal from noise (Corcoran et al., 2011). PARalyzer identi-

fied 9,050 putative RNA-protein contact sites (RCSs) for JARID2,

of which�26% overlapped by more than 50%with repeats (Fig-

ure 2E) and were discarded. Among the 2,057 lncRNAs anno-

tated in the mouse genome (ENSEMBL release 67), we identified

106 that contained at least one nonrepetitive RCS for JARID2

(Table S1). This bioinformatic pipeline applied to our previously

generated EZH2 PAR-CLIP data (Kaneko et al., 2013) revealed

that, in the same ESCs, EZH2 interacted with 165 lncRNAs, of

which 53 were in common with JARID2 (Figure 2F; Table S1),

including Meg3/Gtl2, Rian, and Mirg, three lncRNAs encoded

within the imprinted Dlk1-Dio3 locus.

We focused our attention on the lncRNA Meg3 (also known as

Gtl2), because of previous reports linking it to pluripotency

(Stadtfeld et al., 2010), imprinting (da Rocha et al., 2008), and

PRC2 function (Zhao et al., 2010). Consistent with our

PARalyzer analysis, several tags and RCSs from both JARID2

and EZH2 PAR-CLIP data mapped to Meg3 (Figure 2G).

Although some of the JARID2 CLIP tags mapped to a 50 region
annotated as an intron by ENSEMBL (red track), the existence of

an exon in this region is supported by the TROMER database

(Benson et al., 2004) (green track), and our own RNA-seq

(data not shown). Another cluster of JARID2 CLIP tags mapped

to the 30 exon and accumulated in a region where PARalyzer

identified an RCS (Figure 2G). Few CLIP tags mapped to highly

expressed genes such as Nanog (Figure S2A) or Gapdh (Fig-

ure S2B), suggesting that the presence of Meg3 tags reflected

direct interactions in vivo.

A B C

D

G

E F

Figure 2. JARID2 and EZH2 Share Interact-

ing lncRNAs In Vivo, Including Meg3

(A) PAR-CLIP with JARID2 antibodies or IgG in E14

ESC cells. The position of full-length JARID2 is

indicated. The asterisk marks a presumed degra-

dation product.

(B) Immunoblot on the samematerial utilized for the

autoradiography in (A). J2, anti-JARID2 antibody.

(C) PAR-CLIP (top) and immunoblot for JARID2

(bottom) performed in cells pulsed (+) or not

pulsed (�) with 4-SU and stably transfected with

an shRNA against Jarid2 or a control shRNA.

Extracts were treated with increasing concentra-

tion of a cocktail of DNase-free RNase A and T1.

(D) PAR-CLIP-seq blot for JARID2.

(E) Distribution of JARID2 RCSs identified by

PARalyzer in the genome. The stacked columns

represent % of total RCSs. ‘‘Repeats’’ include all

features listed in the RepMask database.

(F) Venn diagram of lncRNAs containing RCSs for

JARID2, EZH2, or both. PAR-CLIP data for EZH2

were taken from GSE49433 (Kaneko et al., 2013).

(G) Genome browser view of JARID2 and EZH2

CLIP tags (black bars) or RCSs identified by

PARalyzer (red bars) mapping to the Meg3

lncRNA. Gene models forMeg3 according to both

TROMER and ENSEMBL are shown. Meg3 frag-

ments tested for in vitro binding are indicated at

the bottom.

See also Figure S2 and Table S1.
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The RBR of JARID2 Contributes toMeg3 Binding In Vitro
and In Vivo
Having identifiedMeg3 as a JARID2-interacting lncRNA by CLIP,

we next tested this interaction in vitro. We performed pull-down

assays with in vitro-transcribed fragments of Meg3 (Figure 2G,

bottom) obtained from a previously generated clone (Zhao

et al., 2010). Although all tested fragments bound to a recombi-

nant JARID2 fragment spanning the RBR (Figure 3A), the interac-

tion was stronger for fragments originating from the 30 end of the

clone (Figure 3B), including one (fragment ‘‘K’’) that spanned the

only RCS identified in this region (Figure 2G). We analyzed struc-

tural predictions for these fragments but found no obvious sim-

ilarities among those that bound with higher affinity, except a

trend for less stable structures (Figure S3). Importantly, a JARID2

fragment lacking the RBR displayed a pronounced reduction in

binding affinity, at least toward the Meg3 fragment tested (frag-

ment ‘‘F’’; Figures 3A and 3B).

To validate these JARID2-RNA interactions with a technique

more quantitative than PAR-CLIP, we resorted to native RNA

immunoprecipitations (RIPs) followed by quantitative PCR

(qPCR). Consistent with our PAR-CLIP results and previous re-

ports (Zhao et al., 2010), Meg3 was enriched in PRC2 RIPs per-

- + - +

A B

C D

E F

G H

Figure 3. The JARID2 RBR Mediates Inter-

actions of Meg3 with PRC2

(A) In vitro pull-down assay with different frag-

ments ofMeg3 using 4 mg ofGST-JARID2 119–450

WT or DRBR.

(B) Quantification of bands shown in (A).

(C) RIPs for EZH2 were performed in E14 ESCs

stably transfected with an shRNA against Jarid2

(KD) or empty vector (ctrl). Coprecipitated proteins

were revealed by western blot. The 10% input and

IgG lanes are shown as controls.

(D) qRT-PCR on EZH2RIPs from control E14 ESCs

(white bars) or Jarid2 knockdown E14 ESCs (black

bars). Data are shown as percentage of RIP input.

Bars represent the mean of four replicates + SD.

(E and F) As in (C) and (D) but Ezh2 was knocked

down and the RIP were performed with JARID2

antibodies.

(G) Western blots for HA RIPs from nuclear ex-

tracts of KH2 transiently transfected with N3-

tagged EZH2, EZH2DRBR (top), JARID2, and

JARID2DRBR (bottom). I, input; IP, HA immuno-

precipitation; FT, flow-through.

(H) qRT-PCR normalized to Gapdh levels on HA

RIPs described in (E). Bars indicate the mean of

three biological replicates + SEM. *p < 0.05 by

Mann-Whitney U test.

See also Figures S3 and S4.

formed with EZH2 antibodies, and so

were two other lncRNAs encoded within

the same imprinted locus, Rian and Mirg

(Figures 3C and 3D). However, when

we depleted JARID2 by small hairpin

RNA (shRNA)-mediated knockdown, we

observed a considerable decrease in the

amounts of these lncRNAs coprecipitat-

ing with PRC2 (Figures 3C and 3D), and

similar results were obtained with SUZ12 antibodies (Figures

S4A and S4B). Importantly, knockdown of Ezh2 did not affect

the ability of JARID2 to bind to Meg3, Rian, or Mirg (Figures 3E

and 3F), suggesting that the JARID2-Meg3 interaction makes

the largest contribution to the affinity of Meg3 for PRC2.

We then asked whether Meg3 bound to JARID2 via the RBR.

To this end, we transiently expressed in mouse ESCs hemagglu-

tinin (HA)-tagged EZH2, EZH2 lacking the previously identified

RBR (EZH2DRBR) (Kaneko et al., 2010), JARID2, and JARID2DRBR
and performed HA RIPs followed by quantitative RT-PCRs (qRT-

PCRs). Consistent with the results presented above, the interac-

tion of Meg3 with JARID2 was significantly decreased when its

RBR was removed, whereas EZH2 and EZH2DRBR coprecipi-

tated Meg3 with equal efficiencies (Figures 3G and 3H). We

detected a similar trend for Rian, although in that case the differ-

ence did not reach statistical significance (Figure 3H). Similarly,

human JARID2, but not human JARID2DRBR, bound to Meg3 in

mouse ESCs (Figures S4C and S4D).

These data supported the conclusion that Meg3 interacts

with PRC2 mainly through the RBR of JARID2, which led us to

speculate that this lncRNA may participate in the function of

JARID2 on chromatin.
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MEG3 Regulates PRC2 Occupancy In Trans

In light of the connection between MEG3 and pluripotency

(Stadtfeld et al., 2010), we turned our attention to a set of eight

human induced pluripotent stem cell (hiPSC) lines that differ

greatly in their levels of MEG3 expression (Nishino et al., 2011),

thus offering a natural experimental system in which to study

the effects of MEG3 on PRC2 function. We classified these lines

into 5 MEG3+ and 3 MEG3� (Figures S5A and S5B) and

confirmed that EZH2, SUZ12, and JARID2 were expressed at

similar levels in MEG3+ and MEG3� lines (Figures S5C–S5E).

Importantly, pluripotent markers OCT3/4 and NANOG were

also expressed at comparable levels in all lines and at much

higher levels than in differentiated cells, such as foreskin fibro-

blasts (Figures S5F and S5G).

Next, we performed chromatin immunoprecipitation (ChIP) fol-

lowed by deep sequencing (ChIP-seq) for JARID2, EZH2, and

H3K27me3, the product of PRC2 catalysis. We identified

enriched regions (ERs) for all three features and compared

normalized read densities in MEG3+ versus MEG3� cells. The

genome-wide analysis revealed 29, 89, and 268 differentially

bound regions (DBRs) with a false discovery rate (FDR) < 0.1 in

MEG3+ versus MEG3� cells for JARID2, EZH2, and H3K27me3,

respectively (Figures 4A–4C). At most of theseMEG3-dependent

DBRs,PRC2exhibited stronger binding in thehiPSC lines that ex-

pressed MEG3, suggesting that the lncRNA had a stimulatory

function (Figures 4A–4C; Figures S6A–S6C). Genes near the

MEG3-dependent DBRs were enriched for functional terms

related to the regulation of transcription during embryonic devel-

opment and differentiation (Table S2), even taking into account

the enrichment of developmental and transcription-related terms

10
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Figure 4. Decreased Occupancy of PRC2 at

Some Chromatin Targets in MEG3– Cells

(A–C) MA plots for JARID2 (A), EZH2 (B), and

H3K27me3 (C) occupancy, as determined by the

normalized and input-corrected read densities in

MEG3+ (above dotted line) versus MEG3� (below

dotted line) hiPSC lines. Each dot represents an

ER in common between at least two hiPSC lines.

DBRs with an FDR < 0.1 are displayed in red.

(D) Venn diagram for DBRs with FDR < 0.1.

(E) qRT-PCR analysis of PRC2 targets in MEG3+

and MEG3� hiPSCs. Bars represent the mean

RNA abundance (as percentage of GAPDH) in the

five MEG3+ and three MEG3� lines tested. *p <

0.05, as calculated by Mann-Whitney U test.

(F) qRT-PCR for Meg3 24 hr after transfection of

KH2 ESCs with control (white bar) or Meg3

siRNAs.

(G and H) ChIP-qPCR for JARID2 (G) or EZH2 (H)

with primers mapping to PRC2 peaks near the

indicated genes in KH2 ESCs treated with control

(white bars) or Meg3 (black bars) siRNAs. Bars

represent the mean of three replicates + SEM. *p <

0.05 by Mann-Whitney U test.

See also Figures S5–S7 and Tables S2 and S3.

in the background population comprising

all JARID2, EZH2, and H3K27me3 ERs

(Table S3).

Of the 29 MEG3-dependent DBRs for JARID2, 21 overlapped

with EZH2 DBRs (Figure 4D), and of these 16 also overlapped

with H3K27me3 DBRs, a fraction much larger than expected

by chance alone (p value < 10�20, hypergeometric distribution).

Among the regions with lower JARID2 occupancy in the absence

of MEG3 were the loci encoding the transcription factors ZIC5,

NR4A2, ZIC2, and PITX, as well as the neuronal gene PCDHGC5

(Figure S6D and data not shown), all of which function in differen-

tiating or differentiated cells and must therefore be silenced in

pluripotent stem cells. In all loci tested, the MEG3-dependent

loss of PRC2 targeting resulted in transcriptional derepression

(Figure 4E).

It has been suggested that, in mouse ESCs,Meg3 exerts a cis-

repressive effect on the adjacent Dlk1 gene by recruiting PRC2

(Zhao et al., 2010). To determine whether a similar mechanism

was conserved in hiPSCs, we analyzed the DLK1 promoter in

MEG3+ versus MEG3� hiPSCs. Unexpectedly, we observed no

differences in JARID2 or PRC2 occupancy (data not shown)

and no evidence of a reciprocal correlation in the levels of

MEG3 and DLK1 RNA in these cells (Figure S5H) or with the

protein-coding RNA at the other extremity of the imprinted locus,

DIO3 (Figure S5J).

Because the DLK1-DIO3 locus encodes multiple ncRNAs

(MEG3, RIAN, and MIRG), all repressed in MEG3� hiPSCs, we

examined the effect of alteringMEG3 levels alone on PRC2 local-

ization. We overexpressed MEG3 (or GFP RNA as a control) in

MEG3� hiPSCs and analyzed the distribution of JARID2 and

EZH2 by ChIP-seq. A caveat of this experiment is that MEG3

was expressed at levels �10 times higher than in the average

MEG3+ line (Figure S7A); nonetheless, we observed increased
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densities of JARID2 at some MEG3-dependent DBRs, but not

at control targets (Figure S7B). However, we did not detect re-

covery of JARID2 occupancy at all JARID2 DBRs (Figure S7C),

suggesting that the regulation afforded by endogenous MEG3

could not be fully recapitulated by providing large amounts of

the lncRNA in trans. Interestingly, PRC2 was preferentially

depleted from the EZH2 DBRs upon overexpression of MEG3

(Figure S7D). Although this depletion of EZH2 was unexpected,

the fact that the EZH2 DBRs were preferentially depleted by

the manipulation of MEG3 levels is consistent with the idea

that occupancy at these sites is selectively regulated by this

lncRNA.

To further verify that the observed changes in PRC2 occu-

pancy were directly related to the changes in MEG3 levels, we

performed transient knockdown of the orthologous lncRNA

in mouse ESCs. Despite only partial knockdown efficiency

(�50%; Figure 4F), six out of nine DBRs tested lost JARID2

and EZH2 after Meg3 depletion (Figures 4G and 4H), suggesting

that the regulation of PRC2 by Meg3 is conserved between

human and mouse. PRC2 occupancy at Plek2, Mbnl3, and

Cdx4 was not affected by Meg3 knockdown (data not shown),

despite the fact that orthologous loci were among the MEG3-

dependent DBRs in hiPSCs. However, it is not surprising that

subtle differences in gene regulation would exist across this spe-

cies barrier, especially given that mouse and human stem cells

are not equivalent (Ginis et al., 2004).

Together, our ChIP experiments in hiPSCs and mouse ESCs

support the conclusion that MEG3 acts in trans on PRC2 and

JARID2 by facilitating their recruitment to a subset of target

genes.

RNA Facilitates JARID2-PRC2 Interactions
Given that loss of MEG3 caused defects in PRC2 recruitment

and that several lncRNAs crosslinked to both JARID2 and

EZH2 in vivo, we hypothesized that RNA-mediated scaffolding

could stabilize JARID2-PRC2 interactions. To test this hypothe-

sis in vitro, we first examined the lncRNA HOTAIR, which func-

tions as a scaffold between the LSD1/CoREST/REST complex

and PRC2 (Tsai et al., 2010). Low amounts of HOTAIR stimulated

the interaction between recombinant EZH2 and JARID2 frag-

ments in vitro (Figures 5A and 5B, compare lanes 1–3), whereas

higher concentrations of the RNA resulted in a return to baseline

interaction levels, suggesting the possibility of squelching (Fig-

ures 5A and 5B, compare lanes 3–5). This stimulation was

considerably reduced for JARID2 fragments that lacked the

RBR (Figures 5A and 5B, lanes 6–10) but retained the ability to

interact with EZH2 (Figure 5A, compare lanes 1 and 6) or when

we replaced the HOTAIR lncRNA fragment with a shorter

version, a control pre-microRNA that forms two stem-loops, or

double-stranded DNA containing the HOTAIR lncRNA sequence

(Figures 5C–5F). Stimulation of binding was also observed when

we incubated recombinant EZH2 and JARID2 with those Meg3

fragments that displayed maximum affinity in the in vitro pull-

down assay (Figure 5G). Therefore, stimulation of JARID2-

EZH2 interactions may be a general mechanism of action for

lncRNAs that bind to these proteins.

The JARID2 RBR Stimulates PRC2 Assembly on
Chromatin
Having discovered that lncRNAs stimulate JARID2-PRC2 inter-

actions in vivo (Figure 4) and in vitro (Figure 5) and knowing that

the RBRwas required for the latter (Figures 5A and 5B), we asked

whether it was also required for the former. To this end, we over-

expressed JARID2 or JARID2DRBR in human foreskin fibroblasts,

which express high levels of HOTAIR (Rinn et al., 2007), and

measured its accumulation at known genomic targets by ChIP-

qPCR. Wild-type (WT) and mutant JARID2 were expressed at

comparable levels in lentivirally transducedfibroblasts (Figure6A,

top) and did not affect EZH2 levels (Figure 6A, middle). Upon

JARID2 overexpression, we observed increased accumulation

A

B

G

C

D

E

F

Figure 5. HOTAIR Stimulates EZH2–JARID2

Interactions via the JARID2 RBR

(A) FLAG-6xHis-tagged recombinant EZH2

(20 pmol) was incubated with 6xHis-tagged

JARID2119–450 WT or DRBR (40 pmol) in pres-

ence of increasing amounts of HOTAIR1–333

(0–12 pmol). Pull-down was performed with anti-

FLAG beads and proteins revealed by 6xHis

immunoblot.

(B) Densitometric quantification of the signal for

JARID2 shown in (A). WT and DRBR lanes were

normalized each to lane 1 and lane 6 (no HOTAIR

control), respectively.

(C–F) In vitro interaction stimulation assays with

recombinant 6xHis-tagged JARID2119–574 and

FLAG-6xHis-tagged full-length EZH2 in presence

of increasing concentrations of HOTAIR1–333 (C), a

smaller 50 truncation of HOTAIR (D), a microRNA

(E), or double-stranded DNA (F). Pull down was

performed with anti-FLAG beads and proteins

stained with Coomassie blue.

(G) Same as (C)–(F) using Meg3 fragments.
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of the protein at known chromatin targets, such as HOXD8 and

GATA2, compared with controls (Figure 6B). JARID2DRBR accu-

mulated at these targets with the same efficiency as the WT pro-

tein but, unlike the WT, it was incapable to recruit additional

EZH2, which remained at the same levels as observed in the

mock-transfected cells (Figure 6C). Given that these targets

were already silent in the mock-transfected controls, we did not

attempt to detect further repression at the transcriptional level.

These results suggest that RNA-protein interactions via the

JARID2 RBR contribute to the recruitment and assembly of

PRC2 on chromatin. Interestingly, depletion of HOTAIR in fore-

skin fibroblasts also impairs PRC2 recruitment at these loci

(Rinn et al., 2007; Tsai et al., 2010), suggesting that it may act

through interactions with the JARID2 RBR.

The fact that JARID2DRBR is incapable of recruiting EZH2 to

target sites is compatible with a model by which lncRNAs modu-

late JARID2-PRC2 interactions and orchestrate the distribution

and activity of PRC2 on chromatin.

DISCUSSION

The results presented above allow us to add JARID2 to the

growing list of chromatin-associated proteins that interact with

lncRNAs and offer further support to the hypothesis that

lncRNAs are a component of the Polycomb axis in mammals.

We mapped the JARID2 RBR to an N-terminal fragment that

contains no annotated features or domains, despite the fact

that, in addition to RNA binding, it is also responsible for interac-

tions with SUZ12, EZH2, nucleosomes, and PRC2 stimulation

(Kim et al., 2003; Li et al., 2010; Pasini et al., 2010; Son et al.,

2013). Although we assigned these biochemical activities to

distinct protein fragments (Figure S1), they do map to adjacent

regions, and it is tempting to speculate that this vicinity might

reflect a functional crosstalk, by which, for example, RNA bind-

ing could stimulate nucleosomal binding and contribute to

PRC2 regulation.

Among the lncRNAs identified by PAR-CLIP, we focused our

functional analysis on Meg3 because of its connections with

ESC pluripotency, imprinting, and PRC2 function (da Rocha

et al., 2008; Stadtfeld et al., 2010; Zhao et al., 2010). We demon-

strated JARID2-Meg3 interactions using RIP-qPCR, PAR-CLIP,

and in vitro pull-down assays. Importantly, we also found RCSs

for EZH2 within Meg3 in our previously published EZH2 PAR-

CLIP data set (Kaneko et al., 2013) (Figures 2F and 2G). This is

consistent with earlier results obtained by native and UV-cross-

linked RIP (Zhao et al., 2010) and supports a model by which

Meg3 contacts both JARID2 and EZH2 and stimulates their

interaction. Without JARID2 the interaction between Meg3 and

PRC2 is much weaker (Figure 3D), suggesting that of the two

contact points, the one on JARID2 makes the larger contribution

to the affinity for Meg3. We note that by using Ezh2�/� cells as a

control, Zhao et al. could not have detected this requirement for

JARID2, because in absence of EZH2 the IP performed with an

anti-EZH2 antibody would not have recovered JARID2.

We envision a model in which some lncRNAs function as scaf-

fold to stimulate assembly of PRC2 at JARID2 target sites (Fig-

ure 7A). In addition, the existence of DBRs that lose JARID2

occupancy in absence of MEG3 (Figure 4A) suggests that, at

certain sites, lncRNAsmight also be required for the initial recruit-

ment of JARID2 (Figure 7B). In both scenarios, the net result of

lncRNA action is to increase PRC2 occupancy and H3K27me3

deposition (Figures 7A and 7B). We have demonstrated this

model using MEG3 and genomic targets in hiPSCs and mouse

ESCs (Figure 4); however, the recovery of other lncRNAs cross-

linked to both JARID2 and EZH2 by PAR-CLIP-seq (Figure 2F;

Table S1) allows us to speculate that this mode of action might

not be limited to MEG3. In fact, the JARID2DRBR mutant does

not recruit PRC2 to theHOX locus in foreskin fibroblasts, despite

the fact that this locus is not MEG3 dependent. We propose that

other lncRNAs function as scaffold for JARID2-PRC2 interac-

tions in this setting and we note that foreskin fibroblasts express

high levels of HOTAIR (Rinn et al., 2007), which is also able to

stimulate JARID2-EZH2 interactions in vitro (Figure 5).

Not all lncRNAs bind equally to JARID2 and EZH2. Our reanal-

ysis of EZH2 PAR-CLIP tags (Kaneko et al., 2013) identified a

number of lncRNAs not shared with JARID2 (Figure 2F; Table

S1) that, likely, regulate PRC2 function in JARID2-independent

ways. In addition to lncRNAs, EZH2 binds to a variety of coding

transcripts in vivo and in vitro with high affinity but seemingly

low specificity (Davidovich et al., 2013; Kaneko et al., 2013).

Those interactions appear to constitute a distinct regulatory

A B

C

Figure 6. JARID2 Recruits EZH2 to Chromatin in an RBR-Dependent

Manner

(A) Western blots for foreskin fibroblasts transduced with lentiviruses ex-

pressing JARID2, JARID2DRBR, or mock transduced.

(B and C) ChIP-qPCRwith antibodies against JARID2 (B) or EZH2 (C) at known

PRC2 chromatin targets in foreskin fibroblasts transduced as in (A). Several

primer sets are shown for HOXD8. The primers for MYT1 were designed at a

distal location, devoid of PRC2, and serve as a negative control. The ChIP

enrichment is normalized against that obtained with the same antibodies in

mock-transfected control cells (dotted line). Bars represent mean of four

technical replicates + SD (B) or three biological replicates + SEM (C). *p < 0.05

by Mann-Whitney U test.
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mechanism from the one described here, as they occur mostly at

promoters of transcribed genes, which have low PRC2 occu-

pancy (Davidovich et al., 2013; Kaneko et al., 2013) and are

largely devoid of JARID2 (data not shown). However, we cannot

exclude that nascent RNAs could compete with lncRNAs for

binding to EZH2, which might help explain their apparent inhibi-

tory function.

Our gain-of-function experiments in hiPSCs confirmed that at

least some JARID2 DBRs identified in MEG3+ versus MEG3-

hiPSCs can be rescued by supplying MEG3 lncRNA in trans to

otherwise MEG3-negative hiPSCs (Figure S7B). The ectopic

expression of MEG3 lncRNAs caused EZH2 depletion rather

than increased occupancy at the previously identified MEG3-

dependent DBRs (Figure S7D), which was in contrast to our

expectations. However, considering that lentiviral transduction

resulted in 10-fold higherMEG3 levels compared to endogenous

MEG3 (Figure S7A), we speculate that such an excess of

RNA molecules acted in a dominant negative fashion through

squelching, as seen in vitro (Figure 5). It is also possible that

the random integration of the lentivirally encoded MEG3 at

ectopical sites within the genome may explain its unphysiologi-

cal behavior in these experiments, given that the genomic

location of lncRNA genes appears to play a pivotal role in their

function (Ulitsky et al., 2011). Nonetheless, the fact that MEG3-

dependent DBRs were selectively affected confirmed that occu-

pancy at these targets is indeed regulated by MEG3, which was

further supported by the results of transientMeg3 knockdown in

mouse ESCs (Figures 4G and 4H).

Genomic imprinting of MEG3 is unstable in human ESCs, and

several hiPSC lines, regardless of their parental cell type, main-

tain repression at this locus even after continuous passaging

(Nishino et al., 2011). This is likely mediated by aberrant DNA

hypermethylation (Nishino et al., 2011) (data not shown). There-

fore, it is possible that current reprogramming protocols fail to

set the appropriate epigenetic state at the DLK1-DIO3 locus,

which is an important consideration given that improper regula-

tion of this imprinted regions leads to developmental abnormal-

ities in mice (Stadtfeld et al., 2010; Takahashi et al., 2009) and

humans (Kagami et al., 2008). The mechanistic details of the

epigenetic alteration at this imprinted locus during reprogram-

ming remains elusive, but our data suggest that MEG3 interac-

tions with PRC2 might play an important role.

Although our findings suggest a molecular mechanism by

which MEG3 contributes to JARID2 and PRC2 function, further

investigations are required to address (1) whether and how this

mechanism extends to the other lncRNAs identified by PAR-

CLIP, and (2) whether and how lncRNAs regulate de novo recruit-

ment of their interacting proteins to distant loci. Our in vitro

binding analyses of Meg3 lncRNA suggest that JARID2 does

not bind to RNA in a sequence-specific manner, consistent

with the fact that the primary sequence of lncRNAs is not well

conserved (Ulitsky et al., 2011).

In conclusion, we have demonstrated that JARID2, an essen-

tial regulatory component of PRC2 in pluripotent stem cells, con-

tains an RNA-binding region that mediates, at least in part, its

interaction with the imprinted lncRNAMEG3. This—and possibly

other—RNA interaction contributes to proper recruitment and

assembly of PRC2 on target genes and likely plays an important

role in orchestrating the epigenetic regulation of gene expression

that accompanies the transition from stem cell pluripotency to

differentiation.

EXPERIMENTAL PROCEDURES

For information about antibodies, oligonucleotides, and plasmids see Tables

S4–S6 and the Supplemental Experimental Procedures.

Cells

HiPSCswere cultured as described previously (Nishino et al., 2011). Cells were

harvested at passage 34 (UtE-iPS-4), 41 (UtE-iPS-11), 45 (UtE-iPS-7), 41 (AM-

iPS-6), 50 (AM-iPS-8), 39 (UtE-iPS-6), 41 (MRC5-iPS-25), and 90 (Edom-

iPS-2). Human foreskin fibroblasts (#PCS-201-010, lot# 58490326; ATCC)

were cultured in fibroblast basal medium (ATCC) plus fibroblast growth kit-

low serum (ATCC). KH2 ESCs expressing the reverse tetracycline-controlled

transactivator (rtTA) (Hochedlinger et al., 2005) were maintained in standard

mouse ESC (mESC) culture conditions. KH2 lines expressing Jarid2 and

Jarid2DRBRwere generated by transfection of the relevant pINTA-N3 construct

and selecting with 50 mg/ml Zeocin (Invitrogen). Transgene expression was

induced with doxycycline for 24 hr. E14Tg2A.4 mESC lines (E14 mESC) and

HEK293 and HEK293T cells were cultured as described previously (Kaneko

et al., 2010). Jarid2 knockdown mESCs were described previously (Li et al.,

2010).

In Vitro Binding Assays

Protein purification, synthesis of HOTAIR lncRNA (1–333), and biotinylated

RNA pull-down assays were described previously (Kaneko et al., 2010). All

A

B

Figure 7. Proposed Model for the Interplay of lncRNAs, JARID2,

and PRC2

(A) At some target genes, the presence of JARID2 by itself (I) is not sufficient for

maximum PRC2 recruitment, which requires scaffolding by lncRNAs (II). The

presence of both JARID2 and lncRNAs stimulates further recruitment and

assembly of PRC2 on chromatin, resulting in increased H3K27me3 (III). The

structure of lncRNAs bound to JARID2 (and PRC2) remains to be elucidated,

and the one shown here is only for the purpose of illustration.

(B) In some cases, lncRNAs might contribute to the initial recruitment of

JARID2 to chromatin (I). Because JARID2 also binds PRC2 via protein-

protein interactions, this results in increased PRC2 recruitment and H3K27

methylation (II).
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RNA fragments were generated by in vitro transcription; see the Supplemental

Information for details.

LncRNA-mediated stimulation of EZH2–JARID2 interactions was assayed

by incubating FLAG- and 6xHis-tagged EZH2 (20 pmol) with increasing

amounts (0–12 pmol) of lncRNAs in 100 ml of binding buffer (50 mM Tris-HCl,

pH 7.9; 100 mM KCl; 0.1% NP-40) for 30 min at 25�C. 6xHis-tagged truncated

JARID2 (40 pmol) was added to the reaction and incubated for 30 min at 25�C.
Complexes were purified using FLAG-M2 affinity gel (Sigma), after washing

with binding buffer.

For JARID2–Meg3 in vitro binding assays, 4 mg of GST-JARID2119–450 were

incubated with a series of Meg3 fragments (1 mg, 400 nt each; see Table S7).

Bound RNAswere purified with glutathione beads, resolved with 7M urea gels,

stained with SYBR-gold (Invitrogen), and quantified with an ImageQuant

LAS4000 (GE Healthcare Life Sciences).

Knockdowns

For conditional knockdown of Ezh2 in E14mESCs, we generated stable clones

with an integration of pTRIPZ lentiviral inducible shRNAmir targeting human

and mouse Ezh2 (#RHS4696-99635303; Open Biosystems). Selection was

done by puromycin (1 mg/ml) and cloneswere screened by red fluorescent pro-

tein (RFP) expression after 3–4 days of doxycycline (1 mg/ml) induction.

For transient knockdown of Meg3, we tested four siRNAs from QIAGEN

(SI05169486, SI05169710, SI01060129, and SI01060136) and used the siRNA

resulting in the most efficient knockdown (SI05169486) (see Supplemental

Information).

ChIP

ChIP from hiPSCs, foreskin fibroblast, and mESCs was performed as

described (Kaneko et al., 2007), with minor modification, and libraries were

constructed as described (Gao et al., 2012). Briefly, cells were crosslinked

with 1% formaldehyde for 10 min and sonicated in ChIP buffer (50 mM Tris-

HCl [pH 7.9], 150 mM NaCl, 1% Triton X-100, 0.5% NP-40, 5 mM EDTA

[pH 8.0], 1 mM phenylmethanesulfonylfluoride, and protease inhibitors) with

a Diagenode Bioruptor. Incubations with antibodies were carried out in an

ultrasonic water bath for 30 min at 4�C. Samples were decrosslinked at

65�C for �16 hr for library construction or 95�C 10 min for ChIP-qPCR. See

the Supplemental Information for more details.

RNA Immunoprecipitation

For Figures 3G and 3H, nuclear extracts were obtained using an established

protocol (Dignam et al., 1983) with minor modifications to minimize RNase

activity, lysates were diluted in RIP buffer (20 mM Tris [pH 7.9]4�C, 200 mM

KCl, 0.05% IGEPAL CA-630, 10 mM EDTA), cleared by centrifugation at

20,000 3 g for 10 min, and incubated with depleting amounts of antibody

for 3 hr at 4�C. Immunocomplexes were recovered with protein G-coupled

dynabeads (Invitrogen) for 1 hr at 4�C. Beads were washed in RIP-W buffer

(20 mM Tris [pH 7.9]4�C, 200 mM KCl, 0.05% IGEPAL CA-630, 1 mM MgCl2)

twice and incubated with 2 U TURBO DNase (Ambion) in 20 ml RIP-W buffer

for 10min at room temperature to avoid DNA bridging artifacts. After two addi-

tional washes, RNA was eluted and purified with TRIzol (Invitrogen).

For Figures 2C–2F, RIPs were performed on whole-cell lysates, as

described before (Kaneko et al., 2010) (see also Supplemental Information).

ChIP-Seq Analysis

Sequenced reads from ChIP-seq experiments were mapped with BOWTIE

using parameters -v2 -m4–best (Langmead et al., 2009). Normalized

genome-wide read densities were computed and visualized on the UCSC

genome browser. Bound regions (ERs) were identified using MACS 2.09

(Zhang et al., 2008) and default parameters. ERs were associated to gene

targets using ChIPpeakAnno and ENSEMBL annotation 67.

PAR-CLIP

ESCs were pulsed with 100 mM4-SU (Sigma) for 16–24 hr and crosslinked with

400 mJ/cm2 UVA (365 nm) using a Stratalinker UV crosslinker (Stratagene).

Cells were lysed for 10 min at 37�C in CLIP buffer (20 mM HEPES [pH 7.4],

5mMEDTA, 150mMNaCl, 2% lauryldimethylbetaine) with protease inhibitors,

20 U/ml Turbo DNase (Life Technologies), and 200 U/ml murine RNase inhib-

itor (New England Biolabs). IPs were carried out in CLIP buffer for 1 hr at 4�C.
When necessary, extracts were treated with RNase A + T1 cocktail (Ambion)

for 50 at 37�C. Immunocomplexes were recovered with protein G-coupled

dynabeads for 45 min at 4�C. DNA was removed with Turbo DNase (2 U in

20 ml). Crosslinked RNA was labeled by incubations with 5U Antarctic phos-

phatase and 5U T4 PNK (both from New England Biolabs) in presence of

10 mCi [g-32P] ATP (PerkinElmer, MA). Labeled material was resolved on 8%

bis-tris gels, transferred to nitrocellulose, and exposed to autoradiography

films for 1–24 hr.

For PAR-CLIP-seq, 100 pmol of a 30-blocked DNA adaptor was ligated to

the RNA after dephosphorylation and before 50 labeling by incubating the

beads with T4 RNA ligase 1 (New England Biolabs) for 1 hr at 25�C. After auto-
radiography, bands were excised and the RNA eluted with proteinase K for

30 minutes at 37�C and proteinase K in 3.5M urea for 30 minutes at 55�C.
Custom 50 adapters were ligated, and the products were size-selected on

polyacrylamide or agarose gels, amplified, and sequenced on an Illumina

HiSeq 2000.

For the analysis, adapter sequences were removed and reads < 17 nt dis-

carded. The remaining reads were mapped to the mm9 genome using

BOWTIE (Langmead et al., 2009), allowing two mismatches and removing

duplicates. RCSs were identified with PARalyzer (Corcoran et al., 2011)

requiring at least two T/C conversions per RCS. For Figure 2F, RCSs were

assigned to lncRNAs in ENSEMBL 67 when they overlapped anywhere within

the gene body to account for imprecisions in the annotation of lncRNAs.

RNA Structural Predictions

Structural predictions and minimum free-energy calculations shown in Fig-

ure S3 were performed with the Vienna RNA Websuite using default settings

(Gruber et al., 2008).

ACCESSION NUMBERS

The ChIP and CLIP sequences reported in this paper have been deposited to

the Gene Expression Omnibus (GEO) with the accession number GSE48518.

EZH2 PAR-CLIP-seq data used for comparative analyses were taken from

GEO accession number GSE49433 (Kaneko et al., 2013).
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SUMMARY

Epigenomic profiling by chromatin immunoprecipita-
tion coupled with massively parallel DNA sequencing
(ChIP-seq) is a prevailing methodology used to
investigate chromatin-based regulation in biological
systems such as human disease, but the lack of
an empirical methodology to enable normalization
among experiments has limited the precision and
usefulness of this technique. Here, we describe a
method called ChIP with reference exogenous
genome (ChIP-Rx) that allows one to perform
genome-wide quantitative comparisons of histone
modification status across cell populations using
defined quantities of a reference epigenome. ChIP-
Rx enables the discovery and quantification of dy-
namic epigenomic profiles across mammalian cells
that would otherwise remain hidden using traditional
normalization methods. We demonstrate the utility
of this method for measuring epigenomic changes
following chemical perturbations and show how
reference normalization of ChIP-seq experiments en-
ables the discovery of disease-relevant changes in
histone modification occupancy.

INTRODUCTION

The ability to map genomic occupancy of transcriptional regula-

tors, histone posttranslational modifications, and DNA methyl-

ation (epigenomic modifications) has enabled the elucidation of

transcriptional mechanisms, genome organization, mapping of

functional regulatory elements, and discovery of disease-associ-

ated chromatin markers (Badeaux and Shi, 2013; Barski et al.,

2007; Lee and Young, 2013; Rivera and Ren, 2013; Zhou et al.,

2011). Such targeted and large-scale epigenome mapping

efforts have revealed chromatin regulatory proteins that are ther-

apeutic targets for a wide variety of human diseases (Azad et al.,

2013; Dawson and Kouzarides, 2012; Deshpande et al., 2012;

Wee et al., 2014). Many of these chromatin regulators exhibit

cell-type-selective, gene-selective, or disease-relevant effects,

creating a critical need to study the chromatin modifications

catalyzed by these regulators. Accurate quantification of both

global and loci-specific chromatin modifications is needed to

allow the discovery and characterization of epigenomic regula-

tors and epigenome-modulating agents.

Traditional ChIP-seq methodologies are not inherently quanti-

tative and therefore do not allow direct comparisons between

samples derived from different cell types or between cells

that have experienced a perturbation, such as a genomic alter-

ation or chemical treatment. For example, if we employ the tradi-

tional reads per million (RPM) ChIP-seq normalization method, a

cell population containing chromatin state ‘‘A’’ (a high level of

histone posttranslational modification) will appear similar to a

cell population containing chromatin state ‘‘B,’’ where 50% of

the signal has been removed (Figure 1A), because the signal

is quantified as a simple percentage of all mapped reads. More-

over, additional variables, such as variations in genome frag-

mentation, immunoprecipitation efficiency, or other experi-

mental steps, frequently confound analysis. Efforts to correct

for these variables have produced in silico normalization strate-

gies, but an empirical method to enable direct and quantitative

comparisons among epigenomic ChIP-seq data sets is still

lacking (Bardet et al., 2012; Landt et al., 2012; Liang and Kelesx,
2012; Liu et al., 2013; Nair et al., 2012). Because of the

experimental and analytical restrictions of ChIP-seq, a robust

normalization methodology is needed to quantify epigenome

differences among varying cell populations, treatments, and

genomic states.

RESULTS

Here we present a method, called ChIP with reference exoge-

nous genome (ChIP-Rx), that utilizes a constant amount of refer-

ence or ‘‘spike-in’’ epigenome, added on a per-cell basis, to

allow direct comparison between two ormore ChIP-seq samples

(Figure 1B). Analogous methodologies have been applied in

areas of gene-expression analysis that have revealed global

transcriptional amplification upon normalization and in Meth-

ylC-seq, where bisulfate conversion rates have been normalized

(Kanno et al., 2006; Krueger et al., 2012; Lin et al., 2012; Lovén

et al., 2012; van de Peppel et al., 2003). These advancements

have allowed standardization, precision, and a mechanistic
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understanding of RNA transcription (van Bakel and Holstege,

2004; Jiang et al., 2011; Li et al., 2013); however, no cell-

count-normalized methods have been applied to global correc-

tion of histone posttranslational modifications. Since a vast array

of histone modifications have been described in eukaryotic

cells that play roles in organismal development, maintenance

of cell state, differentiation, and disease, including those associ-

ated with transcriptional processes, genome organization,

DNA repair, and cell-cycle progression (Calo and Wysocka,

2013; Pastor et al., 2013; Rinn and Chang, 2012; Rivera and

Ren, 2013; Tan et al., 2011; Tian et al., 2012), a quantitative

method for comparing these key marks is needed. We reasoned

that the Drosophila melanogaster genome would be a desir-

able exogenous reference for mammalian cells because the

Drosophila genome is well studied and has a high-quality

sequence assembly, there is minimal mapping of the Drosophila

genome sequence to human or mouse genomes (>0.05%; Table

S1; Supplemental Experimental Procedures), Drosophila cells

are readily available in large quantities, and theDrosophila epige-

nome displays nearly all of the key histone modification marks

reported in humans. Moreover, histone proteins are among the

most conserved proteins from humans to yeast, indicating that

available ChIP-quality antibodies would likely recognize both

Drosophila and human chromatin (Sullivan et al., 2002; Wolffe

and Pruss, 1996).

To determine the impact of mixing interspecies epige-

nomes, we tested whether the addition of a reference genome

(Drosophila S2 cells) would inherently affect our ability to detect

a histone modification within the test sample (human cells) using

ChIP-seq. We compared Jurkat cells alone with Jurkat cells that

had been mixed with Drosophila cells and analyzed the resulting

histone H3 lysine-79 dimethyl (H3K79me2) ChIP-seq profiles

(Figure S1; Table S2). We determined that mixing of Drosophila

and human cells did not induce large-scale changes in the

H3K79me2 profiles, as the profiles of these cell populations

were highly correlated by total signal as well as enriched

loci overlap (Pearson correlation = 0.96; Supplemental Experi-

mental Procedures). Moreover, reads originating from human

or Drosophila could be separated with 99% accuracy (Supple-

mental Experimental Procedures). Together, these results indi-

cate that the addition of a reference genome did not impede

our ability to detect histone mark occupancy.

We devised an experiment to test our ability to detect changes

in histone modification occupancy throughout the human

Figure 1. Normalization and Interpretation of ChIP-Seq Data

(A) Schematic representation of a typical ChIP-seq data workflow. Interrogation of a human epigenome (Blue circles, nucleosomes) with a full complement of

histone modification (red circles, top) versus an epigenome with a half complement of histone modification (red circles, bottom). ChIP, sequencing, and mapping

using reads per million (RPM) reveals ChIP-seq peaks (blue). A comparison of the peaks as a percentage of the total reads reveals little difference.

(B) Schematic representation of a ChIP-seq data workflowwith reference genome normalization. Interrogation of a human epigenome (Blue circles, nucleosomes)

with a full complement of histone modification (red circles, top) versus an epigenome with a half complement of histonemodification (red circles, bottom). A fixed

amount of reference epigenome (orange, nucleosomes; red, histone modifications) is added to human cells in each condition. After ChIP, sequencing, and

mapping, the ChIP sequence reads are normalized to the percentage of reference genome reads in the sample (reference-adjusted RPM [RRPM]). A comparison

of ChIP-seq signals using normalized reads reveals a 50% difference between peaks. This method is called ChIP with reference exogenous genome (ChIP-Rx).

1164 Cell Reports 9, 1163–1170, November 6, 2014 ª2014 The Authors



epigenome using ChIP-Rx (Figure 2A). We reasoned that an

initial test of ChIP-Rx normalization should feature an epige-

nomic modification that could be readily removed and was not

essential for cell viability in themodel cell line. Using the selective

DOT1L inhibitor EPZ5676 (Daigle et al., 2013), we depleted the

Histone H3 lysine-79 dimethyl (H3K79me2) modification from

Jurkat cell bulk histones (Figure 2B). The H3K79me2 modifica-

tion is catalyzed by the DOT1L protein and is associated with

the release of paused RNA Polymerase II and licensing of tran-

scriptional elongation (van Leeuwen et al., 2002; Ng et al.,

2002; Shanower et al., 2005; Steger et al., 2008). This modifica-

tion is typically deposited within the 50 regions of genes and its

presence is not critical for Jurkat cell viability (Daigle et al.,

2011, 2013; Schübeler et al., 2004; Steger et al., 2008). Bymixing

untreated cells (full H3K79me2) with EPZ5676-treated cells

(H3K79me2 depleted), we created a set of cell populations

with defined quantities of H3K79me2, as verified by immunode-

tection (Figure 2B). To each of these cell populations we added

Drosophila cells at a ratio of one Drosophila cell per two hu-

man cells, which provided a constant ‘‘reference’’ amount of

H3K79me2 per human cell. We performed ChIP-seq from sam-

ples consisting of 0:100, 25:75, 50:50, 75:25, and 100:0 propor-

tions of EPZ5676 to DMSO-treated Jurkat cells. We then tested

whether traditional ChIP-seq analysis methods would reveal the

decrease in human per-cell H3K79me2 occupancy and, if not,

whether the addition of the Drosophila epigenome would allow

detection of H3K79me2 removal.

A key prediction of our normalization method is that as the

global level of a histone modification is depleted in human cells,

the percentage of total reads mapping to the reference

Drosophila genome should increase. This is because the con-

stant amount of reference genome added per human cell

accounts for a greater percentage of total ChIP DNA fragments

as human epitopes are lost (see the ratio of blue to orange

DNA fragments in Figure 1B). To test this prediction, we interro-

gated cells with defined H3K79me2 levels (Figure 2B) by ChIP-

Rx to measure genomic H3K79me2 occupancy. As a control,

we also measured H3K4me3 occupancy, which is a histone

modification that is not appreciably changed within our test

cell populations (Figure 2B). As predicted, H3K79me2 depletion

in Jurkat cells both reduced ChIP-Rx reads mapping to the hu-

man genome and increased reads mapping to the Drosophila

genome (Figure 3A). We did not observe a similar change in

the mapping ratio for H3K4me3 in the same samples, consistent

with the finding that H3K4me3 was not preferentially removed

from the human genome (Figure 3B). These results demonstrate

that a reference genome can internally normalize the read count.

We next used the reference Drosophila genome to quantita-

tively normalize across experiments. To make ChIP-seq data

quantitative on a per-cell basis, it is necessary to introduce a

reference signal that is constant per cell, fromwhich a normaliza-

tion factor can be derived. Our ChIP-Rx protocol uses the signal

from a fixed amount ofDrosophila genome per human cell as this

reference. We derived a normalization factor (see the Supple-

mental Experimental Procedures) for each experiment, such

that the resulting Drosophila signal was equilibrated across all

experiments (Table S2; Figure S2). Using traditional RPM

normalization, the loci-specific ChIP-seq profiles and metagene

profiles for H3K79me2 and H3K4me3 appear unchanged for the

majority of samples (Figures 3C–3F), despite evidence that the

H3K79me2 modification is progressively depleted (Figure 2B).

After normalization with the Drosophila reference (normalized

reference-adjusted RPM [RRPM]), a striking and gradated

decrease in H3K79me2 signal across the samples is evident

(Figures 3C, 3E, 3G, and S3). Normalization did not appreciably

affect the metagene profiles of the control H3K4me3 experi-

ments (Figures 3D, 3F, 3H, and S3). Repeat experiments pro-

duced the same result in all cases: normalization revealed a

loss of H3K79me2 across the samples and H3K4me3 profiles

were not significantly affected (Figure S4). These results indicate

that normalization to a Drosophila reference is an effective

method for quantitatively comparing multiple experiments and

can reveal changes in histone modification that may not be

apparent without proper normalization.

Having validated the ChIP-Rx methodology using standard-

ized quantities of H3K79me2, we next tested our ability to

Figure 2. Experimental Design of Differen-

tial H3K79me2 Detection

(A) Schematic representation of differential

H3K79me2 detection and normalization strate-

gies. Two populations of cells were produced: a

human epigenome (blue nucleosomes) with a full

complement of H3K79me2 (red circles, top left)

and a human epigenome (blue nucleosomes)

with depleted H3K79me2 due to EPZ5676 expo-

sure (top right). These cells were mixed in defined

proportions in order to allow a dilution of total

genomic histone modification (dark red to pink).

Cell mixtures were subjected to ChIP-seq in the

presence of the reference Drosophila epigenome

(orange). ChIP-seq signals were calculated based

on traditional or Drosophila-reference-normalized

methods. See also Figure S1.

(B)Western blot validation of H3K79me2 depletion

in Jurkat cells. Mixtures of 0%–100% EPZ5676-

treated cells (0:100; 25:75; 50:50, 75:25; 100:0 proportions of [DMSO-treated:EPZ5676-treated] cells) were measured by immunoblot (IB) for the presence of

H3K79me2, H3K4me3, or total histone H3 (loading control). Treated cells were exposed to 20 mM EPZ5676 for 4 days.

See also Table S1.
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normalize between ChIP-seq experiments in a disease-relevant

system. MV4;11 acute myelomonocytic leukemia cells are a

DOT1L-inhibitor sensitive model of human mixed-lineage-linked

leukemia, a disease characterized by reciprocal translocations

of the mixed-lineage leukemia (MLL) gene (Daigle et al., 2011,

2013; Deshpande et al., 2012). We treated MV4;11 cells with

DOT1L inhibitor and measured changes in H3K79me2 occu-

pancy in the presence or absence of the reference Drosophila

Figure 3. ChIP-Rx Reveals Quantitative Epigenome Changes

(A and B) Percentage of reads aligning to either test (human, blue) orDrosophila (reference, orange) genomes after H3K79me2 ChIP-Rx (A) or H3K4me3 ChIP-Rx

(B). Samples containing 0%, 25%, 50%, 75%, or 100% EPZ5676 treated Jurkat cells were used as defined in Figure 2B.

(C and D) Sequenced reads from H3K79me2 (C) and H3K4me3 (D) immunoprecipitations at the RPL13A gene locus in traditional reads per million (RPM,top) or

reference-adjusted reads per million (RRPM, bottom; see Experimental Procedures). Color indicates the percentage of sample treated with EPZ5676. The gene

model is shown below the track.

(E) Meta-gene profile of H3K79me2-occupied genes in Jurkat cells. Meta-gene profiles were produced with traditional RPM (left) or RRPM (right). Color indicates

the percentage of Jurkat cell sample treated with EPZ5676 as in Figure 2B. Region �5 to +10 kb around the transcription start site (TSS) is shown. Meta-gene

profile was derived from top 5,000 protein-coding genes as defined by total H3K79me2 signal in the 0% treated (untreated with EPZ5676) sample. A meta-gene

profile representing all genes is shown in Figure S3.

(F) Meta-gene profile of H3K4me3-occupied genes in Jurkat cells. Meta-gene profiles were produced with traditional RPM (left) or RRPM (right). Color indicates

the percentage of Jurkat cell sample treated with EPZ5676 as in Figure 2B. Region �5 to +10 kb around the transcription start site (TSS) is shown. Meta-gene

profile was derived from top 5,000 protein-coding genes as defined by total H3K4me3 signal in the 0% treated (untreated with EPZ5676) sample. A meta-gene

profile representing all genes is shown in Figure S3.

(G and H) Line graphs display the observed fold-change difference in average meta-gene signal across the �5 to +10 kb window around the TSS for each

H3K79me2 (G) or H3K4me3 (H) ChIP sample (x axis) relative to the signal from the 0% treated population using traditional (gray) or reference (black) normalization.

See also Figures S2–S4 and Table S2.
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epigenome (Figures 4A–4E, S5A, and S5B). EPZ5676 induced a

dose-dependent decrease in bulk H3K79me2 (Figure 4A), but

this result was masked when we quantified H3K79me2 occu-

pancy using traditional normalization (Figures 4C and 4E). We

observed a dose-dependent decrease in H3K79me2 genomic

occupancy only after employing reference normalization (Fig-

ures 4C–4E). This unmasking of epigenomic effects may be crit-

ical for understanding the cell-type-selective effects of small-

molecule epigenome modulators. For example, MV4;11 cells

exhibit global H3K79me2 depletion at a low dose of EPZ5676,

consistent with the known selectivity of the DOT1L inhibitor for

leukemic cells carrying MLL translocations, but EPZ5676-insen-

sitive Jurkat cells do not (Figures 4A andS5C; Daigle et al., 2013).

Thus, normalizing to a reference exogenous genome rectifies the

protein-level measurements and genome occupancy of modi-

fied histones, and reveals subtle epigenomic changes that may

underlie or predict cellular responses to drugs (Figure 4). These

results show that ChIP-Rx enables the discovery of epigenomic

changes that can provide insight into disease and inform drug

mechanisms.

DISCUSSION

In summary, we have demonstrated that ChIP-Rx allows the dis-

covery and quantification of dynamic epigenomic profiles across

mammalian cells that would otherwise remain hidden using

Figure 4. ChIP-Rx Reveals Epigenomic Alterations in Disease Cells that Respond to Drug Treatment

(A) Western blot showing the levels of H3K79me2 in MV4;11 cells after treatment for 4 days with increasing concentrations of EPZ5676.

(B) Percentage of H3K79me2 ChIP-seq reads aligning to either test (human, blue) or Drosophila (reference, orange) genomes after H3K79me2 ChIP-Rx from

MV4;11 cells treated as in (A).

(C) Sequenced reads from H3K79me2 immunoprecipitations at the REXO1 gene locus in standard RPM (top) or RRPM (bottom) (see Experimental Procedures).

Color indicates the concentration of EPZ5676 given to each sample. The gene model is shown below the track.

(D) Meta-gene profile of H3K79me2-occupied genes in MV4;11 cells. Meta-gene profiles were produced with traditional Reads Per Million (RPM, left) or

Reference-adjusted Reads Per Million (RRPM, right). Color indicates the concentration of EPZ5676 used in each sample. The region �5 kb to +10 kb around the

TSS is shown. Meta-gene profile was derived from top 5,000 protein-coding genes as defined by total H3K79me2 signal in the 0nM treated (untreated with

EPZ5676) sample. A meta-gene profile representing all genes is shown in Figure S3.

(E) Line graph displays the observed fold-change difference in average meta-gene signal across the �5 to +10 kb window around the TSS for each H3K79me2

ChIP sample (x axis) relative to the signal from the 0 nM treated population using standard (gray) or reference (black) normalization.

(F) Box plots display the distribution of the observed fold change of H3K79me2 signal �5 kb to +10 kb around the TSS of all genes between the 0 nM and 5 nM

treated samples (blue, MV4;11; green, Jurkat) for all genes using traditional (left) or reference-adjusted (right) normalization (see the Supplemental Experimental

Procedures).

See also Figures S3 and S5 and Table S2.
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traditional normalization methods. A recent study employed a

similar reference strategy for ChIP-seq normalization (Bonhoure

et al., 2014); however, our method offers two crucial advantages

that allow direct comparative epigenomic analysis. First, our

method introduces the reference at the beginning of the experi-

ment, thus normalizing for variation throughout the experiment,

including chromatin fragmentation and immunoenrichment, both

of which are critical for epitope and genome retrieval (Kidder

et al., 2011; Meyer and Liu, 2014; Raha et al., 2010). Second, as

was analogously shown for RNA expression correction (Lovén

et al., 2012), our method introduces the reference ‘‘spike-in’’ on

a per-cell basis as opposed to total chromatin, thus allowing

the detection of unidirectional chromatin changes irrespective of

variations in ploidy or gross chromatin. Thus, ourmethodprovides

greater accuracy in determining epigenome changes that occur

upon cell perturbation or exposure to small-molecule inhibitors

as compared with current methods. Importantly, ChIP-Rx allows

for the detection of subtle epigenomic changes, as opposed to

qualitative occupancy calls, and thus advances the ChIP-seq

methodology fromadescriptive,binary readout toone that reveals

gradated epigenomic changes. This is particularly important for

thedose-rangingcharacterizationofchemical tools and therapeu-

tics targeting chromatin-associated complexes via genome-wide

approaches. Application of this methodology to additional model

systems, including mouse, rat, and zebrafish (Table S1), as well

as additional histone modifications, including repressive (i.e.,

H3K27me3) and activating (i.e., H3K27ac) histone modifications,

will enable far-reaching studies of comparative epigenomics.

We recommend the implementation of ChIP-Rx whenever

quantitative or comparative epigenomic changes are under

investigation. The method described here will be critical for un-

derstanding the global and site-selective epigenomic changes

that occur in human disease, during cell-state changes, and

especially the action of small-molecule inhibitors of chromatin-

modulating proteins.

EXPERIMENTAL PROCEDURES

Human Cell Lines, Growth, and Treatment

Jurkat cells were obtained from ATCC and maintained in RPMI (Life

Technologies) supplemented with 10% fetal bovine serum (FBS; Life Technolo-

gies) at 5%CO2 in37
�C.MV4;11cellswereobtained fromATCCandmaintained

in RPMI (Life Technologies) supplemented with 10% FBS at 5% CO2 in 37�C.
Jurkat cells were treated with DMSO or EPZ5676 (Selleck Chemicals, cata-

log number S7062) at 5 nM or 20 mM for 4 days, and MV4;11 cells were treated

with DMSO or EPZ5676 at 0.5 nM, 2 nM, or 5 nM for 4 days. Live-cell numbers

were quantified using the Countess cell counter (Life Technologies).

At harvest, cells were crosslinked with 1% formaldehyde by addition of 1/10

volume of fresh 11% formaldehyde solution (11% formaldehyde 0.1 M NaCl,

1 mM EDTA, 0.5 mM EGTA, 50 mM HEPES) and incubation at room tempera-

ture for 8 min. Crosslinking reactions were quenched with a 1/20 volume of

2.5 M glycine for 1–5 min and cells were pelleted. The cells were then washed

three times with ice-cold PBS. Washed cell pellets were flash frozen and

stored at �80�C.

Preparation of Drosophila S2 Cells

Drosophila S2 cells (ATCC catalog number CRL-1963; Biovest part number

OO.763/OO.627) were cultured in Schneider’sDrosophilamedia (Life Technol-

ogies catalog number 21720-024) supplemented with 10% FBS to attain a

density of 0.5–0.6 3 106 cells/ml. Cell culture and scale-up to 2 L was per-

formed by Biovest International.

At harvest, cells were crosslinked with 1% formaldehyde by addition of a

1/10 volume of fresh 11% formaldehyde solution (11% formaldehyde 0.1 M

NaCl, 1mMEDTA, 0.5 mMEGTA, 50mMHEPES) and incubation at room tem-

perature for 8 min. Crosslinking reactions were quenched with a 1/20 volume

of 2.5 M glycine for 1–5 min and cells were pelleted. The cells were then

washed three times with ice-cold PBS. Washed cell pellets were flash frozen

and stored at �80�C at 1 3 108 cells per aliquot.

ChIP-Rx

For each ChIP-Rx experiment, a 2:1 ratio of human:Drosophila cells was used.

This corresponds to 20 million crosslinked human cells and 10 million cross-

linked S2 cells (Jurkat experiments) or 15 million crosslinked human cells

and 7.5 million crosslinked S2 cells (MV4;11 experiments).

S2 cells were added to human cells at the beginning of the ChIP-Rx work-

flow (during nuclei isolation). Once Drosophila S2 and human cells were com-

bined, the sample was treated as a single ChIP-seq sample throughout the

experiment until completion of DNA sequencing.

Briefly, frozen, crosslinked human andDrosophila cells were resuspended in

parallel in cold Lysis Buffer 1 (140 mMNaCl, 1 mM EDTA, 50 mMHEPES, 10%

glycerol, 0.5% NP-40, 0.25% Triton-X-100), incubated 10 min at 4�C, and pel-

leted. Both human andDrosophila cell sampleswere resuspended in parallel in

Lysis Buffer 2 (10 mM TRIS [pH 8.0], 200 mM NaCl, 1 mM EDTA, 0.5 mM

EGTA), incubated for 10 min at 4�C, and combined to the desired cell number

ratios (two human cells per oneDrosophila cell). The composite cell nuclei was

then pelleted and resuspended in sonication buffer (10 mM TRIS [pH 8.0],

1 mM EDTA, 0.1% SDS).

Composite samples (human + Drosophila S2) in sonication buffer were son-

icated using a Covaris E220 sonication water bath for 5 min. Sheared chro-

matin was diluted 1:1 in 23 dilution buffer (300 mM NaCl, 2 mM EDTA,

50 mM TRIS [pH 8.0], 1.5% Triton-X, 0.1% SDS) and incubated with either

H3K79me2 (Abcam 3594)- or H3K4me3 (Millipore 07-473)-conjugated Protein

G Dynal beads (Invitrogen) overnight (8–16 hr, rotating) at 4�C, and then

washed two times with wash buffer 1 (50 mM HEPES, 140 mM NaCl, 1 mM

EDTA, 1 mM EGTA, 0.75% Triton-X, 0.1% SDS, 0.05% DOC), two times

with high-salt wash buffer (50 mM HEPES, 500 mM NaCl, 1 mM EDTA,

1 mM EGTA, 0.75% Triton-X, 0.1% SDS, 0.05% DOC), and one time with

TE-NaCl buffer (10 mM Tris [pH 8.0], 1 mM EDTA, 50 mM NaCl). Samples

were eluted from beads for 1 hr at 65�C in elution buffer (50 mM TRIS [pH

8.0], 10 mM EDTA, 1% SDS) and supernatant reverse-crosslinked at 65�C
for 6–16 hr. Samples were diluted 1:1 with TE buffer (50 mM TRIS [pH 8.0],

1 mM EDTA) and treated with RNase A (0.2 mg/ml) for 2 hr at 37�C and then

Proteinase K (0.2 mg/ml) for 2 hr at 55�C. DNA was isolated by phenol-chloro-

form extraction and ethanol precipitation. For detailed protocols see the Sup-

plemental Experimental Procedures and Guenther et al. (2008).

Library Construction, Sequencing, and Data Collection

Libraries were constructed with the Illumina Tru-Seq library preparation kit

using a target fragment size of 200–400 bp and multiplexing barcodes.

Libraries were sequenced using Illumina HiSeq 2000 with single-end reads

for 40 cycles. Sequences were demultiplexed and aligned using Bowtie2

against a ‘‘genome’’ that combines the human hg19 genome and the

Drosophila dm3 genome (see the Supplemental Experimental Procedures). In-

dividual accession numbers and read statistics available in Table S2.

Western Blots

Cells were harvested from all treatment groups and lysed with Triton extraction

buffer (PBS containing 0.5% Triton X-100 [v/v], cOmplete Protease Inhibitors

[Roche]) for 10 min with rotation. Nuclei were collected and acid extracted

with 0.2 NHCl overnight. Histone proteins were collected from the supernatant

and immunoblotted for H3K4me3 (Millipore 07-473), H3K79me2 (Abcam

3594), and histone H3 (Abcam 1791).

Determination of the Normalization Factor

A complete description of the basis and derivation of the ChIP-Rx normaliza-

tion factor is provided in the Supplemental Experimental Procedures. In brief,

we derived a normalization constant, a, such that after normalization the signal
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per-reference cell (b) is the same across all samples. The total ChIP-seq signal

derived from reference cells is simply the count of reads (in millions) aligning to

theDrosophila genome, which we represent as Nd. Because the percentage of

reference cells as a fraction of the total number of cells is constant and we

assume that the epigenome of the reference cells does not vary appreciably,

we can derive a as

a � Nd = b

Because b is a constant, we can simply rewrite this as

a � Nd = 1

or

a=
1

Nd

;

multiplying the read counts by a produces a normalized read count in normal-

ized RRPM.
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SUMMARY

Transcription factor (TF) DNA sequence preferences
direct their regulatory activity, but are currently
known for only�1% of eukaryotic TFs. Broadly sam-
pling DNA-binding domain (DBD) types frommultiple
eukaryotic clades, we determined DNA sequence
preferences for >1,000 TFs encompassing 54
different DBD classes from 131 diverse eukaryotes.
We find that closely related DBDs almost always
have very similar DNA sequence preferences,
enabling inference of motifs for �34% of the
�170,000 known or predicted eukaryotic TFs. Se-
quences matching both measured and inferred
motifs are enriched in chromatin immunoprecipita-
tion sequencing (ChIP-seq) peaks and upstream of
transcription start sites in diverse eukaryotic line-
ages. SNPs defining expression quantitative trait
loci in Arabidopsis promoters are also enriched for
predicted TF binding sites. Importantly, our motif
‘‘library’’ can be used to identify specific TFs whose
bindingmay be altered by human disease risk alleles.

These data present a powerful resource for mapping
transcriptional networks across eukaryotes.

INTRODUCTION

Transcription factor (TF) sequence specificities, typically repre-

sented as ‘‘motifs,’’ are the primary mechanism by which cells

recognize genomic features and regulate genes. Eukaryotic

genomes contain dozens to thousands of TFs encoding at

least one of the >80 known types of sequence-specific DNA-

binding domains (DBDs) (Weirauch and Hughes, 2011). Yet,

even in well-studied organisms, many TFs have unknown

DNA sequence preference (de Boer and Hughes, 2012; Zhu

et al., 2011), and there are virtually no experimental DNA

binding data for TFs in the vast majority of eukaryotes. More-

over, even for the best-studied classes of DBDs, accurate pre-

diction of DNA sequence preferences remains very difficult

(Christensen et al., 2012; Persikov and Singh, 2014), despite

the fact that identification of ‘‘recognition codes’’ that relate

amino acid (AA) sequences to preferred DNA sequences has

been a long-standing goal in the study of TFs (De Masi et al.,

2011; Desjarlais and Berg, 1992; Seeman et al., 1976). These

deficits represent a fundamental limitation in our ability to
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analyze and interpret the function and evolution of DNA

sequences.

The sequence preferences of TFs can be characterized sys-

tematically both in vivo (Odom, 2011) and in vitro (Jolma and Tai-

pale, 2011; Stormo and Zhao, 2010). The most prevalent method

for in vivo analysis is currently chromatin immunoprecipitation

sequencing (ChIP-seq) (Barski and Zhao, 2009; Park, 2009), but

ChIP does not inherently measure relative preference of a TF to

individual sequences and may not identify correct TF motifs

due tocomplicating factors suchaschromatin structureandpart-

ner proteins (Gordân et al., 2009; Li et al., 2011; Liu et al., 2006;

Yan et al., 2013). In contrast, it is relatively straightforward to

derivemotifs from all of the commonmethods for in vitro analysis

of TF sequence specificity, including protein bindingmicroarrays

(PBMs), bacterial 1-hybrid (B1H), and high-throughput in vitro

selection (HT-SELEX) (Stormo and Zhao, 2010), all of which

have been applied to hundreds of proteins (Berger et al., 2008;

Enuameh et al., 2013; Jolma et al., 2013; Noyes et al., 2008).

Previous large-scale studies have reported that proteins with

similar DBDsequences tend to bind very similar DNA sequences,

even when they are from distantly related species (e.g., fly and

human). This observation is important because it suggests that

the sequence preferences of TFs may be broadly inferred from

data for only a small subset of TFs (Alleyne et al., 2009; Berger

et al., 2008; Bernard et al., 2012; Noyes et al., 2008). However,

these analyses have utilized data for only a handful of DBD clas-

ses and species and they contrast with numerous demonstra-

tions that mutation of one or a few critical DBD AAs can alter

the sequence preferences of a TF (Aggarwal et al., 2010; Cook

et al., 1994; De Masi et al., 2011; Mathias et al., 2001; Noyes

et al., 2008), which suggest that prediction of DNA binding pref-

erences by homology should be highly error-prone. To our

knowledge, rigorous and exhaustive analyses of the accuracy

and limitations of inference approaches to predicting TF DNA-

binding motifs using DBD sequences has not been done.

Here, we determined the DNA sequence preferences for

>1,000 carefully-selected TFs from 131 species, representing

all major eukaryotic clades and encompassing 54 DBD classes.

We show that, in general, sequence preferences can be accu-

rately inferred by overall DBD AA identity, suggesting that muta-

tions that dramatically impact sequence specificity are relatively

rare. By identifying distinct confidence thresholds for each indi-

vidual DBD class (i.e., levels of protein sequence identity above

which motifs can be assumed to be identical between two pro-

teins), we infer sequence preferences for roughly one-third of

all known eukaryotic TFs, based on experimental data for fewer

than 2% of them. Cross-validation indicates that �89% of pre-

dicted sequence preferences are as accurate as experimental

replicates of the same TF. We demonstrate the functional rele-

vance and utility of both known and inferred motifs by showing

that they coincide with ChIP-seq binding peak sequences, are

enriched in the promoter regions of diverse eukaryotes, and

significantly overlap eQTLs in Arabidopsis. We also demonstrate

how our data can be used to predict the specific TFs whose

binding would be altered by a human disease risk allele. To

house the data and the resulting inferences, we have created

the Cis-BP database (catalog of inferred sequence binding pref-

erences), freely available at http://cisbp.ccbr.utoronto.ca.

RESULTS

PBM Data for >1,000 Diverse Eukaryotic TFs
We sought to examine the relationship between the DBD AA

sequence identity and the DNA sequence specificity of any

two proteins and to simultaneously broadly survey the sequence

specificity of eukaryotic TFs. To identify TFs, we first scanned the

AA sequences for each of 81 different types of DBDs for which

there is an available Pfam model (Weirauch and Hughes,

2011), using known or predicted proteins in 290 sequenced

eukaryote genomes. We identified a total of 166,851 putative

TFs that fit these criteria. From these, we selected 2,913 individ-

ual TFs to analyze, using several different criteria aimed at

achieving the goals of our study, including a relatively even bal-

ance among DBD classes and species, a survey of different

levels of sequence identity among proteins, and a deeper focus

on several model organisms and abundant DBD classes (see

Experimental Procedures). Figure S1, available online, depicts

the overall scheme.

We analyzed each TF using PBM assays, following proce-

dures previously described (Berger et al., 2006; Weirauch

et al., 2013). The PBM technique can be summarized as follows:

a GST-tagged DNA-binding protein is ‘‘hybridized’’ to a double-

stranded DNA microarray, and subsequent addition of a

fluorescently tagged antibody reveals the DNA sequences that

the protein has bound and to what degree. Each PBM contains

a diverse set of �41,000 35-mer probes, designed such that all

possible 10-mers are present once and only once; thus, all

nonpalindromic 8-mers are present 32 times, allowing for a

robust and unbiased assessment of sequence preference to all

possible 8-mers. Values for individual 8-mers are typically given

as both E scores (that represent relative rank of intensities and

range from �0.5 to + 0.5) (Berger et al., 2006) and Z scores

(that scale approximately with binding affinity) (Badis et al.,

2009). PBMs also allow derivation of position weight matrices

(PWMs) up to 14 bases wide (Badis et al., 2009; Berger et al.,

2006; Mintseris and Eisen, 2006; Weirauch et al., 2013), as well

as International Union of Pure and Applied Chemistry (IUPAC)

consensus sequences (Ray et al., 2013). PWMs can be repre-

sented as sequence logos (Schneider and Stephens, 1990)

that are typically taken as synonymous with ‘‘motifs.’’ Here, we

report 8-mer scores, PWMs, and consensus sequences, and

use whichever is best suited to individual analyses. For example,

while motifs are well suited for visualization of sequence prefer-

ences, and convenient for scanning longer sequences, they can

underestimate reproducibility of experiments due to the intro-

duction of uncertainties in the process of PWM derivation (Weir-

auch et al., 2013; Zhao and Stormo, 2011).

We analyzed each of the 2,913 proteins using two different

PBM arrays, designated ‘‘ME’’ and ‘‘HK’’ after their designers

(Lam et al., 2011). Of these, 1,032 (encompassing 1,017 different

TFs) yielded data that satisfy our stringent success criteria,

including E scores >0.45 on both arrays, and agreement in

both 8-mer data and motifs between the two arrays (Berger

et al., 2008; Weirauch et al., 2013) (see Experimental Proce-

dures). The distribution of the 1,032 proteins over 131 species

and 54 DBD classes is summarized in Figure 1A. Many values

in this matrix are zero because the majority of DBD classes are
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only present in certain subsets of species (e.g., plant-specific

TFs) (Weirauch and Hughes, 2011). PBM failures may be due

to any of several causes, including protein misfolding, require-

ment for cofactors, or bona fide lack of sequence-specific

DNA binding activity.

For 123 of the 1,017 examined TFs, there are previously

described motifs. In most cases, the new motifs we obtained

are highly similar to motifs compiled from the literature (JASPAR

and Transfac), derived from PBMs in other studies, derived from
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Figure 1. Overview of the Motif Data Set

(A) TFs characterized in this study by species and

DBD class. TFs with multiple DBD classes are

indicated with a ‘‘+’’ (e.g., AP2+B3). DBD classes

and species containing fewer than five members

are grouped into ‘‘Other.’’ Species are ordered by

the total number of TFs with characterized motifs.

(B) PBM-derived motifs are similar to previously

characterized motifs. We compared new PBM-

derived motifs to previously determined motifs for

the same TF. p values were calculated using the

TomTom PWM similarity tool (Tanaka et al., 2011),

with Euclidean distance and default parameter

settings. Dashed lines indicate mean (bottom) and

mean + 1 SD (top) of p values obtained from

10,000 randomly selected PWM pairs. ‘‘PBM

(same)’’ and ‘‘PBM (dif)’’ indicate PBMs from other

studies performed using the same, or different

array designs as this study, respectively.

See also Figure S1 and Tables S1, S2, and S6.

other technologies (B1H and HT-SELEX),

or derived from ChIP-seq experiments

(Figure 1B; sources provided as Table

S1; full motif comparisons provided as

Table S2). Importantly, a large majority

of the proteins we analyzed (894/1,017)

had no previous binding data, and among

these, roughly half yielded a motif that

is highly different from any previously

known motif (see Experimental Proce-

dures). For several DBD classes (CG-1,

CxC, GRAS, LOB, and Storekeeper) we

characterized sequence specificity for

the first time. CxC domains, for example,

span a wide range of organisms encom-

passing plants, animals, and protists

and recognize variations of a unique,

largely conserved TTTCGAAA motif.

Inference of TF Sequence
Specificity Using Degree of Identity
in the DNA-Binding Domain
We next used the PBM data to ask how

well the percent protein sequence identity

in the DBD between two proteins corre-

lates with similarity in their DNA sequence

preferences. As a measure of DNA

sequence preference similarity, we calcu-

lated the overlap in high-scoring 8-mers (e.g., E score >0.45) (see

Experimental Procedures), as the E scores are on a uniform scale

that facilitates direct comparison. The boxplots shown in Figure 2

and Data S1 illustrate that there are different characteristic rela-

tionships between DBD identity and 8-mer overlap for different

DBD classes. However, virtually all of the plots display a

sigmoidal appearance, such that a particular threshold defines

the %AA identity over which the majority (75% or more) of pro-

tein pairs have very similar DNA binding preferences (i.e., are
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A

B

Figure 2. Motif Inference Thresholds by DBD Class

(A) Relationship between similarity in DBD AA sequence and DNA sequence preferences. Boxplots depict the relationship between the %ID of aligned AAs

and% of shared 8-mer DNA sequences with E scores exceeding 0.45, for the three DBD classes with the most PBMs in this study. Red lines indicate the median

value of each bin. Edges of the blue boxes indicate the 25th and 75th percentiles. Whiskers extend to the most extreme data points not considered outliers. Red

crosses indicate outliers. %ID bins range from 0 to 100, of size 10, in increments of five. Bottom: number of DBD pairs in each bin. Pink asterisks indicate the

precision of the corresponding bin (i.e., the fraction of protein pairs with 8-mer similarity at least as high as the 25th percentile of replicates). Horizontal line

indicates the 75% precision line used to choose the inference threshold. Vertical lines indicate AA %ID threshold (i.e., the point before the pink asterisks drop

below the horizontal line). Percentage in lower left corner indicates cross validation success rate.

(B) Relationship for all DBD classes. Boxplots for all DBD classes for which we could establish an inference threshold, depicted as in (A). DBD classes are ordered

by the number of TFs characterized in this study.

NR, nuclear receptor. See also Figures S2 and S6.
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at least as similar as the 25th percentile of replicates of the

same protein—see Experimental Procedures) (Figure 2). For ho-

meodomains, this threshold is 70% AA identity (Figure 2A),

almost exactly what we previously reported (65%) (Berger

et al., 2008).

Strikingly, such a threshold can be drawn for virtually every

DBD class (Figure 2 and Data S1). Moreover, exactly the same

trends and thresholds are observed in a leave-one-out cross

validation prediction framework, in which the high-scoring

8-mers are predicted to be identical to those of the protein

with the closest %AA identity (see Experimental Procedures).

Using this framework, we estimate that �89% of predicted

sequence preferences (hereafter, ‘‘inferences’’) above the

thresholds shown in Figure 2 are as accurate as experimental

replicates (Data S1), with similar precision obtained whether in-

ferences are derived from only orthologs (88%) or only paralogs

(90%). The distribution of DBD AA similarities among the 1,017

proteins we analyzed is nearly identical to the distribution among

all sequenced eukaryotes (data not shown), so the same

numbers can be expected for de novo predictions. Furthermore,

comparisons among PWMs (i.e., motifs) confirm these thresh-

olds, despite the potential variation contributed by motif deriva-

tion (Weirauch et al., 2013; Zhao and Stormo, 2011). To illustrate

this concept, Figure 3 depicts PBM-derived motifs obtained for

the Myb/SANT family, grouped according to the relationship of

their DBD AA sequences. Darkly shaded regions, which invari-

ably contain nearly indistinguishable motifs, indicate groups of

TFs with DBD similarity exceeding the 87.5% threshold for this

family.

We conclude that TFs with DBD AA sequence identity above

these thresholds will typically have very similar sequence spec-

ificity. As previously proposed, this presents a simple approach

for broadly predicting the sequence preferences of TFs (Alleyne

et al., 2009; Berger et al., 2008; Bernard et al., 2012; Noyes et al.,

2008): the 8-mer data, motifs, and consensus sequences can be

directly transferred from the nearest protein above the threshold

for which data are available. The data presented here encom-

pass 37 DBD classes with sufficient data (i.e., comparisons in

each of the bins in the box plots) to produce thresholds, together

representing �85% of all known eukaryotic TFs. Until more

data are available, we propose that a threshold of 70% AA

identity (the mean, median, and mode across all DBD classes)

can be applied to the remaining DBD classes (boxplots in

Figure S2 show the aggregate of all of the classes with no

threshold).

Cis-BP: A Catalog of Direct and Inferred Sequence
Binding Preferences
Using the DBD identity thresholds generated above, we globally

assigned probable motifs (and other sequence preference data,

if available) to TFs from 290 eukaryotic genomes. To do this, we

supplemented the PBM data collected in this study with 4,234

additional published motifs (674 from PBMs and 3,560 from

other sources—see Table S1) derived from 1,850 different pro-

teins, mainly in human (623 proteins), mouse (409), fly (316), or

yeast (216). Altogether, there are experimentally determined

motifs for only 1.7% (2,750) of the 166,851 unique TFs within

these genomes. Using the thresholds determined here, it is

possible to infer a motif for roughly one-third of all TFs encoded

by sequenced eukaryotes, bringing the total (known + inferred) to

57,165. Figures 4A and 4B summarize the coverage by DBD

class and by species (see Table S3 for all DBD classes and spe-

cies). Lineages that benefit most from the inference scheme

include vertebrates, plants, fungi, and insects, which contain

many orthologs conserved in the model species analyzed most

heavily. For example, the motif collection for zebrafish (Danio

rerio), which largely consists of inferred motifs, is as complete

as that of mouse and human (Figure 4B).

To facilitate use of the known and inferred motifs by the scien-

tific community, we created a database called catalogue of in-

ferred sequence preferences of DNA-binding proteins (Cis-BP)

(http://cisbp.ccbr.utoronto.ca). In addition to the new experi-

mental data reported here, Cis-BP contains comprehensive

8-mer binding scores, position weight matrices, and IUPAC

consensus motifs from publicly available sources (JASPAR (Por-

tales-Casamar et al., 2010), Transfac (public data only) (Matys

et al., 2006), FlyFactorSurvey (Zhu et al., 2011), FactorBook

(Wang et al., 2013), and data from 674 PBM experiments taken

from other studies (compiled in UniPROBE) (Newburger and

Bulyk, 2009).

In-Vitro-Derived Motifs Predict ChIP-Seq Peaks
To examine the relationship between in-vitro-defined motifs

(both measured and inferred) and in vivo binding sites, we

asked how well the motifs in Cis-BP predict in vivo binding,

based on ENCODE human ChIP-seq data (see Experimental

Procedures). To gauge the ability of a motif to discriminate

between real ChIP peaks (positives) and peak sequences

permuted using an algorithm that maintains all dinucleotide

frequencies (negatives), we used the area under the receiver

operating characteristic (AUROC) summary statistic, in which

perfect discrimination between positives and negatives scores

1.00 and random guessing scores 0.50. Nearly all (111) of the

114 PBM-derived motifs achieved AUROC scores exceeding

the 0.50 random expectation level in at least one ChIP data

set (Figure 5A and Table S4). Strikingly, over one-third of the

motifs (43 of 114), in a variety of DBD classes and cell types,

achieve AUROCs exceeding 0.90 in at least one ChIP data

set, including GABPA in H1-hESC cells (Ets family, AUROC =

0.99), USF2 in GM12878 cells (bHLH, 0.97), and FOS in K562

cells (bZIP, 0.97). Motifs inferred from in vitro data from related

proteins achieve AUROC values similar to those obtained using

in vitro motifs from exactly the same protein that was ChIPped

(Figure 5A). Overall, PBM-derived motifs are equally accurate as

those derived from other sources; the mean AUROCs across

the 19 TFs with at least one PBM-derived motif and one

Transfac motif are 0.834 and 0.827, respectively (Figure 5B

and Table S4), and 0.826 versus 0.831 for the 14 TFs with

both PBM and HT-SELEX-derived motifs (Figure 5C and Table

S4). The small number of cases in which motifs derived from

these other sources performed better than PBM motifs appear

to correspond to multimeric binding that was not detected in

the PBM assays. From this analysis, we conclude that there is

generally no fundamental discrepancy between motifs obtained

from different assays and between the in vivo and in vitro

sequence preferences of TFs.
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Motifs Display Positional Bias in Promoters across
Eukaryotes
Enrichment and positional bias of TF motifs in promoters has

been reported in several model species and human (FitzGerald

et al., 2004; Lee et al., 2007; Mariño-Ramı́rez et al., 2004; Ohler

et al., 2002), and in some cases TFs appear to be involved in

determining promoter identity (de Boer et al., 2014; Megraw

et al., 2009). However, it is unknown whether this is a general

property of eukaryotic promoters. We found that genomes

from vertebrates, plants, fungi, and protists all displayed enrich-

ment of binding sites for their TFs just upstream of the TSS,

relative to permuted sequences and also relative to unrelated

(control) motifs taken from other lineages (Figure 6). The enrich-

ment involved both directly determined and inferred motifs

Mus musculus
Neurospora crassa
Saccharomyces cerevisiae
Ostreococcus tauri
Thalassiosira pseudonana
Arabidopsis thaliana
Cannabis sativa
Oryza sativa
Physcomitrella patens
Dictyostelium discoideum
Paramecium tetraurelia
Phytophthora ramorum
Tetrahymena thermophila
Trichomonas vaginalis

Metazoa
Fungi
Fungi
Alga
Alga
Plants
Plants
Plants
Plants
Protists
Protists
Protists
Protists
Protists

Figure 3. Overview of Myb/SANT Family Motifs

PBM-derived motifs from the Myb/SANT family (84 from this study, 13 from other studies) are shown. Tree reflects the percent of identical AAs after alignment.

Dark shading, 87.5% AA identity (standard inference threshold); light shading, >70% AA identity (relaxed inference threshold). TBF1 and DOT6 each have two

motifs because they were examined in two different studies.
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(Figure 6). Strikingly, the TF classes with motifs enriched in pro-

moters differed between lineages of organisms (Figure S3), indi-

cating that these trends either arose independently in different

lineages, or have evolved considerably in most of them. Further-

more, we found little to no correspondence between overall

motif enrichment and motif sequence composition (i.e., overall

GC-content) (Table S5), and the enrichment was observed

whether the promoters were characteristically GC-rich or AT-

rich (i.e., predicted to be nucleosome favoring or disfavoring,

respectively). We observed similar trends using a reduced set

of nonredundant motifs for each organism (Figure S4), showing

that the phenomenon is not due to expansion of a small number

of TFs families that bind promoters. These observations indicate

that, across eukaryotes, the region just upstream of the TSS typi-

cally is enriched for binding sites that may function in either pro-

moter definition or gene regulation.

ArabidopsisExpressionQuantitative Trait Loci SNPsAre
Enriched for TF Binding Sites
Identifying causal genetic variants and their mechanisms of

action is a fundamental challenge in association studies. As

our data greatly expand the motif collection in the model plant

Arabidopsis, we examined a data set of expression quantitative

trait loci (eQTLs) defined from Arabidopsis genomic sequences

and matched seedling RNA sequencing (RNA-seq) taken from

19 strains (Gan et al., 2011). Among highly significant eQTLs

found within 1 kb upstream of a TSS, there was a striking enrich-

ment (>3-fold for the SNPs with strongest association) for over-

lap with TF motif matches (Figure 7A), strongly suggesting that

these SNPs impact transcription factor binding. As an example,

Figures 7B and 7C show a SNP in the promoter of the

AT5G47250 gene, in which loss of a potential binding site for

the VNI2 TF in the ‘‘A’’ allele correlates almost perfectly with a

dramatic increase in AT5G47250’s expression level, consistent

with the well-characterized role of VNI2 as a transcriptional

repressor (Yamaguchi et al., 2010; Yang et al., 2011). Both
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Figure 4. TF Motif Coverage

TFswithmultiple protein isoforms are counted as a

single gene.

(A) Motif coverage by DBD class. DBD classes

sorted top to bottom by number of TFs character-

ized in this study. Those with fewer than eight pro-

teins characterized in this study are grouped into

‘‘Other.’’ ‘‘Other (selected)’’ indicates DBD classes

selected for characterization in this study. ‘‘Other

(not selected)’’ indicates DBD classes not charac-

terized here. ‘‘Direct’’ includes those experimen-

tally characterized in this study, but not previously

known. ‘‘Total inferred’’ excludes those experi-

mentally characterized in this or previous studies.

(B) Motif coverage by species. Tree at left,

phylogenetic relationships between organisms

(Baldauf et al., 2000).

See also Table S3.

VNI2 and AT5G47250 were associated

with the plant defense response to the

pathogenic oomycete H. arabidopsidis

in a recent genome-wide association study examining 107

different phenotypes (Atwell et al., 2010). Taken together,

these results suggest that VNI2 represses the expression of

AT5G47250 in a pathogen response context, a mechanism

dependent on the specific SNP present in the AT5G47250 pro-

moter region. We expect that the Cis-BP motif collection will

be useful for similar analyses in other organisms: eQTL analysis

can be performed in virtually any species for which there aremul-

tiple strains (or individuals) and does not require well-developed

genetic systems. In fact, in this analysis, a similar level of enrich-

ment was observed using only a set of 65 motifs inferred from

organisms other than Arabidopsis thaliana (Figure S5), suggest-

ing that the motif data need not be derived from the organism in

question (see also below).

Identification of TFs Affected by Disease-Associated
Genetic Variants
Recent analyses indicate that between 85% and 93% of dis-

ease- and trait-associated variants are located in noncoding re-

gions (Hindorff et al., 2009;Maurano et al., 2012), suggesting that

many might alter TF binding events. However, the identification

of specific TFs whose binding might be affected by a given

variant remains a challenging and laborious task. We devised a

system that utilizes all available PBM data to produce a ranked

list of human TFs whose binding might be affected by any given

genetic variant (see Experimental Procedures). To examine the

utility of this system for analyzing human disease-associated

variants, we collected a set of 15 SNPs whose alleles have

been experimentally demonstrated to affect the binding of a spe-

cific TF. One of these SNPs affects two TFs, bringing the total of

analyzed TF/SNP pairs to 16. Strikingly, in ten of these 16 cases,

this procedure ranked the correct TF (or a highly related TF from

the same DBD class) in the top five and often number one (Fig-

ure 7D and Data S1). We note that most of the novel high-ranking

TFs we identify have likely never been experimentally examined

and thus might also represent bona fide cases.
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In one example, a recent study implicated rs554219 in

estrogen-receptor-positive breast cancer tumors and used a

series of experiments to predict and eventually establish that

this SNP causes the differential binding of two Ets family TFs,

ELK4 and GABPA (French et al., 2013). Because rs554219

does not overlap ChIP-seq binding peaks from ENCODE or

other sources, ELK4 and GABPA were identified using a

series of EMSA competition experiments involving known

TF binding sites, a laborious process involving substantial

guesswork. Our automated computational procedure correctly

ranked ELK4 number one and GABPA number two out of

all human TFs (their EMSA data demonstrate strong and

moderate differential binding of ELK4 and GABPA, respec-

tively). The ELK4 prediction is based on an inference from the

pufferfish Tetraodon nigroviridis ELK4 protein (81% AA ID to

human ELK4), further illustrating the utility of cross-species in-

ferences. Moreover, differential binding of ELK4 to the alleles of

rs554219 can also be predicted using data inferred from

Drosophila melanogaster Ets21C (57% AA ID to human ELK4)

and Caenorhabditis elegans F19F10.1 (only 33% AA ID

to ELK4). Thus, our system (available at http://cisbp.ccbr.

utoronto.ca/TFTools.php) can accurately predict the specific

TFs whose binding is affected by risk alleles of disease-associ-

ated SNPs, even when using PBM data inferred from distantly

related organisms.

DISCUSSION

We anticipate that the new data collected here—as well as the

inferred motifs across eukaryotes—will be an invaluable

resource and knowledge base for functional genomics and anal-

ysis of gene regulation. In addition to the data itself, the Cis-BP

database also contains web-based interfaces to tools for scan-

ning DNA sequences for putative motifs, reporting the TFs with

motifs similar to a given motif, predicting the motif recognized

by a given TF based on its DBD AA sequence, and identifying

TFs that will bind differentially to two different DNA sequences

(e.g., disease risk and nonrisk alleles). Cis-BP will enable dissec-

tion of regulatory mechanisms from expression data even in the

vast majority of species for which there are currently no genetic

tools.

The analyses here present a strategy to rapidly populate TF

motif collections across the eukaryotes. As we previously pro-

posed for RNA-binding proteins (Ray et al., 2013), targeting

members of the largest groups of uncharacterized proteins for

experimental analysis will allow the largest number of inferred

motifs to be obtained. Motif inference based on DBD identity

alone is only a first approximation, but it is remarkably cost

effective: the analyses described here indicate that motifs

can be inferred for 34% of all TFs, using data from only 1.7%.

We extrapolate that 1,032 additional successful experiments
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Figure 5. PBM-Derived Motifs Identify

In Vivo TF Binding Locations

(A) AUROC analysis, showing ability of directly

determined and inferred motifs to distinguish

ChIP-seq peak sequences from scrambled se-

quences. We identified TFs with available

ENCODE ChIP-seq data that also have PBM data

available either for that TF, or for related TFs

(based on the inference threshold for the DBD

class). We then gauged the ability of the PBM-

derived motifs to distinguish real ChIP peaks from

scrambled sequences (maintaining all dinucleo-

tide frequencies) using the AUROC (see Experi-

mental Procedures). For each DBD class, results

are binned by DBD%AA ID (key indicated at upper

right). Numbers below each bar indicate the count

in each bin. Error bars indicate SE. ‘‘Random’’

indicates results obtained with a randomly as-

signed, unrelated TF motif. Fox, Forkhead box.

NR, nuclear receptor. Figure S7 shows results

obtained using an alternative null model.

(B) Comparison of AUROC for PBM-derivedmotifs

and literature-derived motifs. We identified TFs

with ENCODE ChIP-seq experimental data that

also have both Transfac and PBM-derived motifs

available. For each TF, we calculated the best

AUROC obtained by any PBM or any Transfac

motif on any of the ENCODE cell line ChIP exper-

iments for that TF. For TFs with multiple motifs

from the same source, the plot shows the mean

AUROC across the motifs.

(C) PBM-derivedmotifs versus HT-SELEX-derived

motifs. Same as for (B), but including only TFs with

motifs available both from PBMs and a recent HT-

SELEX study (Jolma et al., 2013).

See also Table S4.
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(<0.5% of all TFs and a number identical to that in this study)—

one from each of the largest groups of orthologs and paralogs

with no known motifs—would increase coverage across the

eukaryotes from 34% to 48%.

The inference scheme described here relies on the high

degree of conservation among DBDs. Indeed, our analyses

confirm the ‘‘deep homology’’ that has been described for meta-

zoan developmental processes and the TFs that regulate them

(e.g., homeodomains) (Berger et al., 2008; Carroll, 2008; Noyes

et al., 2008) and furthermore indicate that deep homology is a

property of the sequence preferences of many TFs in all eukary-

otic kingdoms. Our initial analyses (data not shown) suggest that

many motifs likely date to the base of metazoans, land plants,

angiosperms (flowering plants), or euteleostomi (bony verte-

brates), consistent with well-established TF expansions in these

lineages (de Mendoza et al., 2013; Weirauch and Hughes, 2011).
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Figure 6. Positional Bias of Motif Matches in Eukaryotic Promoters

PBM-derived PWMs (direct, top heatmap; inferred, bottom heatmap) scored in 20 bp bins, normalized to dinucleotide-permuted controls, averaged across all

promoters, and displayed as Z scores (see Experimental Procedures). Each row in the heatmap corresponds to one PWM. Rows were clustered using hierar-

chical clustering (Pearson correlation, average linkage). Summary plots at the bottom indicate the median Z score, taken across all PWMs from the indicated

species (‘‘Real PWMs’’), or across a set of PWMs from unrelated lineages (‘‘Control PWMs’’) (see Experimental Procedures).

See also Table S5 and Figures S3 and S4.
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Despite widespread conservation, TF repertories do change

over evolutionary time,and thesechanges likely shapeeukaryotic

evolution (de Mendoza et al., 2013). TFs that tend to diversify,

such as the large metazoan C2H2 class (Stubbs et al., 2011),

will present an ongoing challenge to a complete characterization

of eukaryotic TF motifs. In other lineages, other classes of TFs

have expanded and diversified, including the nuclear receptor

class in C. elegans (Maglich et al., 2001), the zinc cluster/GAL4

class in fungi (Shelest, 2008), and several classes in plants

(Lang et al., 2010). The data described here confirm that the

sequence specificities of at least some of these factors have

also diversified. Mapping recognition codes represents an alter-

native approach to more complete cataloguing of TF motifs,

and the data presented here provide many new examples for

the study of TF-DNA recognition. Exceptions to the simple AA

similarity rules described here should also be informative

regarding mechanisms of sequence recognition, because they

will identify AA residues critical for DNA sequence specificity

(De Masi et al., 2011; Noyes et al., 2008). Ongoing efforts to

further the collective knowledge of TF binding specificities will

greatly advance our understanding of TF-DNA interactions, as

well as our ability to interpret the function of DNA sequences,

including understanding the functional impact of natural genetic

variants in human and other species.

EXPERIMENTAL PROCEDURES

Full details are provided in the Extended Experimental Procedures.

Data Availability

PBM data are available in the Gene Expression Omnibus (GEO) database

under accession number GSE53348. PBM data, clone information, and other

data from analyses carried out in this study are available on the project web

site: http://hugheslab.ccbr.utoronto.ca/supplementary-data/CisBP/. Addi-

tional data (including 8-mer scores, PWMs, sequence logos, and information

on TFs) are found on the CisBP web server (http://cisbp.ccbr.utoronto.ca/).

Selection, Cloning, and PBM Analysis of TFs

We compiled the predicted proteomes of 290 eukaryotic organisms from a

variety of sources and supplemented them with an additional 49 known TFs

from organisms without fully sequenced genomes. We scanned all protein se-

quences for putative DNA-binding domains (DBDs) using the 81 Pfam (Finn

et al., 2010) models listed in Weirauch and Hughes (2011) and the HMMER

tool (Eddy, 2009). Each protein was classified into a family based on its

DBDs and their order in the protein sequence. We selected 2,913 individual

TFs to analyze, using several different criteria, including a relatively even bal-

ance among DBD classes and species, a survey of different levels of sequence

identity among proteins, and a deeper focus on several model organisms and

abundant DBD classes. Formost constructs, we designed primers to clone the

region encompassing all DBDs plus the 50 flanking endogenous AAs on either

side (or until the termini of the protein) by conventional PCR methods into one

of a panel of T7-GST vectors for expression in E. coli (referred to hereafter as

‘‘plasmid constructs’’). PBM laboratory methods were identical to those

described in Lam et al. (2011) and Weirauch et al. (2013). Each plasmid was

analyzed in duplicate on two different arrays with differing probe sequences

(denoted ‘‘ME’’ and ‘‘HK’’). Calculation of 8-mer Z and E scores was performed

as previously described (Berger et al., 2006). To obtain a single representative

motif for each protein, we used a procedure similar to a recent study from our

group in which we generated motifs for each array using four different algo-

rithms and chose the best-performing single motif based on cross-replicate

array evaluations (Weirauch et al., 2013).

A

D

B

C

Figure 7. Overlap of Predicted TF Binding

Sites with cis-eQTLs

(A) Number and percentage of Arabidopsis cis-

eQTLs overlapping motifs, as a function of eQTL

significance. Shaded region indicates one stan-

dard deviation in the expected distribution (see

Experimental Procedures).

(B) A cis-eQTL affecting the expression of the

AT5G47250 gene. Boxplots (see Figure 2 legend)

indicate the median normalized gene expression

level for each allele of the cis-eQTL. ‘‘Reference’’

indicates the allele present in the Arabidopsis

reference genome assembly.

(C) The same cis-eQTL ‘‘breaks’’ a putative binding

site for the VNI2 transcriptional repressor.

Sequence logo depicts the DNA-binding motif we

obtained for VNI2. Sequences below indicate the

reference (top) and alternative (bottom) alleles of

the cis-eQTL SNP (boxed) and its flanking bases.

(D) Prediction of human TF binding events altered

by disease risk alleles. We created a method for

using PBM data to predict TFs whose binding is

affected by disease-associated genetic variants

and applied it to 16 known examples. Shown here

are the ten cases inwhichwe ranked the correct TF

(column labeled ‘‘exact’’) or a highly related TF from

the same DBD class (column labeled ‘‘related’’)

within the top five TFs. The ‘‘Event’’ column in-

dicates whether the risk allele results in a ‘‘Loss’’ or

‘‘Gain’’ of binding of the TF. N/A, indicates that

PBM data are not available for the corresponding

TF; �, indicates that the TF did not receive a rank

because both alleles had an E score >0.45.

See also Figure S5.
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Inference Scheme

We established a separate inference threshold for each DBD class. We first

aligned the DBD sequences of all constructs within a DBD class using

clustalOmega (Sievers et al., 2011). We then calculated the AA %ID for all

construct pairs (i.e., the number of identical AAs in the alignments). Within

each DBD class, we grouped all PBM construct pairs into bins, based on AA

%ID. We used overlapping bins of size 10, ranging from 0 to 100, increasing

by 5. We calculated the precision of each bin by comparing the DNA sequence

preferences obtained from all characterized protein pairs contained in the bin.

We quantified the similarity of the DNA sequence preferences of two proteins

as the fraction of shared high-scoring 8-mers. We considered a prediction to

be correct only if this fraction exceeded the value obtained at the 25th percen-

tile of experimental replicates (i.e., the fraction of shared 8-mers between ME

and HK arrays for the same protein). The proportion of predictions scored as

correct (i.e., precision) for each bin of each DBD class is shown as magenta

stars in Figure 2 and Data S1.

We chose inference thresholds for each DBD class based on the precision

scores of each AA %ID bin. Because we used the 25th percentile threshold

to define precision, we would expect a precision of 0.75 or higher in each

AA %ID bin. We therefore chose an inference threshold for each DBD class

by identifying the final AA %ID bin before precision drops below 0.75 (vertical

bars in Figure 2). Similar thresholds were obtained regardless of the E and Z

score 8-mer thresholds used and also regardless of the replicate overlap

percentile considered (i.e., 25th percentile, requiring 0.75 precision or 20th

percentile, requiring 0.80 precision) (Figure S6). The final threshold for a

DBD class was chosen as the median threshold across the eight 8-mer simi-

larity measures (see Figure S6 and Data S1). We found this scheme to be

appropriate for most DBD classes (all of which are depicted in Figure 2). For

three DBD classes (IRF, CXXC zinc fingers, and Dof zinc fingers), we could

not establish a threshold—these therefore received a threshold of 100%. We

used a threshold of 40% for AT-hook TFs, which recognize AT-rich sequences,

based on manual inspection of the data (see Data S1). For the remaining

classes, with suggestive but insufficient data, we chose a threshold of 70%,

which is the mean, median, and mode threshold across all DBD classes.

We used the AA%ID of all pairs of proteins to infer motifs, 8-mer scores, and

consensus sequences within each DBD class by simple transfer (i.e., aligning

the DBD sequences of all proteins and all constructs in a given DBD class, as

described above, and calculating the AA %ID of each protein with each

construct). We also evaluated the effectiveness of our inference scheme in a

leave-one-out cross validation framework, in which the PBM data for each

characterized protein was held out and compared to the PBM data of its near-

est neighbor (i.e., the characterized protein with highest AA %ID), using a

similar scoring scheme to that used to calculate the precisions.

Comparison to ChIP-Seq Data

We calculated AUROC scores on real and permuted (maintaining dinucleotide

frequencies) ChIP-seq peak sequences following Weirauch et al. (2013). We

obtained ENCODE consortium human ChIP-seq data from the UCSCGenome

Browser (Rosenbloom et al., 2012). For each ChIP experiment, we extracted

the top 500 scoring peak region sequences and scored them (and the

permuted sequences) using all direct and inferred PWM models for the given

TF. For each PWM/experiment pair, we then calculated the AUROC using

these sets of 500 positives and 500 negatives. Similar results were obtained

using a negative set consisting of ChIP-bound peaks from unrelated TFs

with matched GC-content (Figure S7).

Positional Bias of Motifs in Eukaryotic Promoters

Weobtained the 1,000 bases upstream of transcription start sites (or, if unavai-

lable, translation start sites) and scored the PWMs of each organism at each

position. We then placed the resulting scores into 20 bp bins, summed the

scores for each bin, and took the average across all promoters for the given

species for each bin. To correct for mono- and dinucleotide biases, we also

scored shuffled promoter sequences, which were created by shuffling the se-

quences within each 20 bp bin (while maintaining dinucleotide frequencies).

For each PWM, we then calculated the ratio of each bin’s real score relative

to the score of the shuffled sequence. The resulting ratios were then normal-

ized across all bins for the given PWMusing a standard Z score transformation.

We also calculated Z scores for a negative control set of TF PWMs for each

organism, consisting of a collection of random motifs from species in other

clades that were unrelated to any PWM from the given species.

Arabidopsis eQTL Analysis

We used a publicly available data set (Gan et al., 2011) containing genome-

wide RNA-seq variance-stabilized expression levels (Huber et al., 2002) taken

from 19 strains of seedling Arabidopsis thaliana and matching genome se-

quences. We identified matches to each A. thaliana PWM within the 1,000

bases upstream of each TSS. We calculated the percentage of genetic vari-

ants that affect these putative binding sites, as a function of the cis-eQTL

p value of the variant (red line, Figure 7). We also created a null distribution

(blue line and blue shaded region, Figure 7) to exclude the possibility that

the observed percentagesmight solely be due to the higher density of TF bind-

ing sites in promoter regions.

Human Disease SNP/TF Analysis

We devised a system for utilizing our collection of PBM data to identify candi-

date human TFs whose binding might be affected by the allelic sequences of

genetic variants. In this system, we score each variant (along with its flanking

genomic bases) using 8-mer E scores taken from the 3,132 PBM experiments

contained in our database. For each PBM experiment, we identify the highest

scoring 8-merE score attained by any of the risk allele sequences (Erisk) and the

highest attained by any nonrisk allele (Enonrisk). We then identify all PBM exper-

iments where only one of Erisk and Enonrisk has an E score value exceeding 0.45

(values above this threshold will likely be strongly bound by the given TF

(Berger et al., 2008)) and map these experiments to human using the inference

scheme. This procedure thus produces a ranked list of human TFs whose

binding is likely to be affected by the alleles of a given SNP (e.g., strongly bind-

ing to one allele but not binding to the other).
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SUMMARY

To exert regulatory function, miRNAs guide Argo-
naute (AGO) proteins to partially complementary
sites on target RNAs. Crosslinking and immunopre-
cipitation (CLIP) assays are state-of-the-art to map
AGO binding sites, but assigning the targeting
miRNA to these sites relies on bioinformatics predic-
tions and is therefore indirect. To directly and unam-
biguously identify miRNA:target site interactions, we
modified our CLIP methodology in C. elegans to
experimentally ligate miRNAs to their target sites.
Unexpectedly, ligation reactions also occurred in
the absence of the exogenous ligase. Our in vivo
data set and reanalysis of published mammalian
AGO-CLIP data for miRNA-chimeras yielded
�17,000 miRNA:target site interactions. Analysis of
interactions and extensive experimental validation
of chimera-discovered targets of viral miRNAs sug-
gest that our strategy identifies canonical, non-
canonical, and nonconserved miRNA:targets. About
80% of miRNA interactions have perfect or partial
seed complementarity. In summary, analysis of
miRNA:target chimeras enables the systematic,
context-specific, in vivo discovery of miRNA binding.

INTRODUCTION

miRNAs associate with Argonaute (AGO) proteins to guide the

RNA-induced silencing complex (RISC) to transcripts and

thereby repress protein production of target mRNAs (Baek

et al., 2008; Bartel, 2009; Fabian et al., 2010; Selbach et al.,

2008). Consequently, the biological role of a miRNA is mainly

specified by its set of targets. Identifying miRNA targets remains

challenging because, in animals, a miRNA typically has hun-

dreds of direct targets under negative selection (Brennecke

et al., 2005; Krek et al., 2005; Lewis et al., 2005; Xie et al.,

2005), and target recognition occurs through only partial

sequence complementarity (Bartel, 2009; Rajewsky, 2006). Of

particular importance to target recognition is the miRNA seed

sequence, i.e., nucleotides (nt) 2–7 from the 50 end of the miRNA

(Bartel, 2009; Lewis et al., 2005; Lai, 2002; Rajewsky, 2006).

Perfect complementarity to the seed is often found to be funda-

mental for binding and a regulatory response. However, in

addition to these canonical binding sites, numerous noncanoni-

cal miRNA target sites have been reported (Bagga et al., 2005;

Chi et al., 2012; Didiano and Hobert, 2006; Helwak et al., 2013;

Lal et al., 2009; Shin et al., 2010; Vella et al., 2004). The base-

pairing patterns for noncanonical targets are not well understood

due to difficulties in their identification.

Conventional approaches to identify miRNA targets

commonly aim to detect perfect seed matches in 30 UTRs, often
by incorporating additional information, such as conservation,

accessibility, and expression of 30 UTR sequences. Despite

the general success of these methods, they do not take into

account context specificity, such as binding sites masked by

other RNA binding proteins (RBPs) or tertiary structure con-

straints, and are not effective at identifying noncanonical or

nonconserved sites. Moreover, false positive rates are often

high unless specificity is boosted at the expense of sensitivity.

Recently, crosslinking and immunoprecipitation (CLIP)

methods (Chi et al., 2009; Hafner et al., 2010; Lebedeva et al.,

2011) have identified AGO binding sites at a transcriptome-

wide scale, generating context-dependent AGO binding maps.

These data per se do not reveal the identity of the miRNA(s)

bound to a certain site. Therefore, tools have been developed

to computationally predict which miRNAs are bound at which

AGO sites (Erhard et al., 2013; Khorshid et al., 2013; Liu et al.,

2013; Majoros et al., 2013). However, assumptions must be

made, such aswhichmiRNAs are loaded into AGO, howmiRNAs

recognize targets, and regarding the validity of biophysical en-

ergy or hidden Markov or logistic models. It is therefore still diffi-

cult to confidently and unambiguously assign which miRNA was

bound to a certain site, especially for sites containing none or

several different seed matches. The identification of miRNA:tar-

gets can be further complicated by sequence similarities

between miRNAs. For example, viral miRNAs can share seed

1042 Molecular Cell 54, 1042–1054, June 19, 2014 ª2014 Elsevier Inc.



sequences with human miRNAs and thus can interfere with

human miRNA binding in infected cells (Gottwein et al., 2011;

2007; Manzano et al., 2013; Skalsky et al. 2007; 2012; Zhao

et al., 2011).

We set out to complement existing approaches by experi-

mental miRNA:target identification. We recently developed

iPAR-CLIP, a biochemical method to generate in vivo maps of

binding sites for RBPs in C. elegans (Jungkamp et al., 2011).

Here, we used iPAR-CLIP and mapped 29,000 unique AGO

binding sites in the worm, improving resolution and depth of pre-

vious studies (Zisoulis et al., 2010). Additionally, we experimen-

tally ligated miRNAs to their binding sites. Our method is similar,

but not identical, to the CLASH protocol recently applied

in a human cell line (Helwak et al., 2013). Sequencing and

computational analysis of these chimeras revealed thousands

of miRNA:targets in C. elegans. Unexpectedly, we also detected

thousands of chimeras when no ligase was added, indicating

endogenous RNA ligase activity in standard CLIP assays.

Indeed, by reanalyzing sequencing data from published AGO-

CLIP experiments, we succeeded in compiling >13,000 human

and mouse miRNA:targets.

We present multiple lines of evidence that these miRNA:

targets have features expected from functional interactions.

We also tested the functionality of miRNA:targets for viral

miRNAs. With the exception of a viral miRNA with poor targeting

proficiency (Garcia et al., 2011; Manzano et al., 2013), we

confirmed regulation for 87% of tested sites, including nonca-

nonical and nonconserved sites. Computational analyses of

our chimera-identified miRNA:targets suggest that �80% of

these interactions have statistically highly significant perfect or

imperfect (1 nt mismatch) complementarity to the miRNA seed

(nt 2-7). Our data further suggest that mismatches in the seed

occur predominantly at positions 2 and 7. Thus, AGO-CLIP

sequencing data contain chimeric reads that enable the identifi-

cation of endogenous, context-specificmiRNA:targets on a tran-

scriptome-wide scale. These data allow insights into principles

by which miRNA recognize target sites.

RESULTS

Identification of 3,600 miRNA:Targets in C. elegans

We adapted our iPAR-CLIP protocol (Jungkamp et al., 2011) to

ligate miRNAs to target sites in C. elegans (Figure 1A). Briefly,

worms incorporated photoreactive 4-thiouridine nucleosides

(4sU) into their RNA, which crosslinks to bound proteins dur-

ing UV irradiation. After homogenization, the lysate was treated

with RNase T1. Argonaute ALG-1 was immunoprecipitated,

and bound RNAs were treated again with RNase, recovered

under stringent conditions, and deep sequenced (Figures S1A

and S1B available online; Experimental Procedures). For the

miRNA:target ligations, we added T4 RNA ligase to immunopuri-

fied and washed AGO complexes. To prevent circularization, we

prepared the RNA ends, leaving the 30 end of target sites blocked

(Figure S1C). Thus, T4 RNA ligase solely connects the 30 hydroxyl
(30 OH) of full-length miRNAs with the 50 ends of target RNA

fragments.

In addition to two standard AGO iPAR-CLIP samples,

we generated two biologically and technically independent

replicates of ligation samples and control samples. Control

samples were generated without the addition of a ligase. Bio-

informatic analysis (Experimental Procedures) of the standard

AGO iPAR-CLIP, the ligation, and the control samples identified

the presence of a total of 13.5 million nonchimeric reads, which

had an average read length of 32 nt and mapped uniquely to the

transcriptome. In PAR-CLIP, the frequency of T-to-C conver-

sions in reads reflects the RNA-protein crosslink efficacy. This

frequency was very high (14:1) in nonchimeric reads compared

to all other possible nucleotide changes.

These data defined a high-resolution AGO binding map (Fig-

ure S2A) that includes 2,286 C. elegans AGO sites previously

identified (Zisoulis et al., 2010: 4,806 unique target sites in

3,093 genes, average length 122 nt; present study: unique

29,000 sites in 8,339 genes, average length 42 nt; Table S3).

Our bioinformatics analyses (Experimental Procedures) revealed

the presence of thousands of miRNA-chimeric reads in the liga-

tion samples (Figure 1B). When mapping the target sequence in

chimeras to the transcriptome, the vast majority mapped to 30

UTRs. Moreover, almost all target sites fell precisely into AGO

binding sites (Figure S1D). Consequently, we mapped chimera

target sequences directly to AGO sites. This increased the sensi-

tivity of target recovery due to the smaller search space (Exper-

imental Procedures). In total, we identified 3,627 miRNA:targets

for C. elegans (Table S3), 677 of which were supported by more

than one chimeric sequence read. Interactions supported by one

read showed essentially the same features as interactions recov-

ered by >1 read (see below; Figures S1E and S1F).

Control Samples Also Contain miRNA:Target Chimeras
Unexpectedly, we detected substantial numbers of chimeras in

our control samples as well as in our AGO iPAR-CLIP samples.

These samples have not been treated with T4 RNA ligase to

generate chimeras (Figure 1C). While ligation samples had

miRNA:target chimeras containing complete or truncated

miRNAs, nearly all chimeras detected in control and AGO

iPAR-CLIP samples contained 30-truncated miRNA sequences

(Figures 1C, S1G, and S1H).

Truncated miRNAs were strongly enriched in a guanine imme-

diately upstream of the cleavage sites in miRNAs and target

RNAs (Figure 1D). RNase T1 cuts with high preference after

guanines, strongly suggesting that RNase T1 produced the

ends used as substrates for this ligation reaction. The ligation

activity required for ligation of 20,30-cyclic P (can convert into

30P) is present in eukaryotic cell lysates, as previously reported

(Filipowicz et al., 1983; Martinez et al., 2002; Perkins et al.,

1985) (Figure 1E).

Could RNAs in the lysate randomly ligate to AGO-loaded

miRNAs? Bacteria are the food source for C. elegans. Therefore,

iPAR-CLIP sequencing data usually contain a substantial frac-

tion of bacterial sequences (�30%). In contrast, less than 2%

of recovered iPAR-CLIP chimeras contained C. elegansmiRNAs

together with bacterial sequences, indicating that ligation of

random RNA fragments to AGO-loaded miRNAs occurred only

rarely. Moreover, miRNA:targets from different samples were

highly overlapping (Figure S1I). The majority (76%) of interac-

tions derived from chimeras with complete miRNAs were also

identified from chimeras with truncated miRNAs (Figure S1J),
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suggesting the recovery of in vivo interactions for both ligation

reactions. Together, these findings prompted us to systemati-

cally analyze the �3,600 identified C. elegans miRNA:target

site interactions jointly for known features of miRNA targeting.

C. elegans miRNA:Targets Recovered from Chimeras
Have Features Characteristic of miRNA Binding
C. elegans miRNA:target chimeras mapped mainly to 30 UTRs
and coding sequences (Figure S2A), similar to AGO binding

sites. Also, the sequences ligated to miRNAs are bona fide

AGO sites since 89% of mapped chimeras overlapped by at

least 80% of their length with AGO binding sites, which is highly

statistically significant (p �0, Figure 1F). Consistently, targets in

miRNA-chimeras had a T-to-C conversion rate of 84%, enriched

20-fold over any other type of nucleotide change (Figure S2B).

This crosslink-specific signal indicates that sequences ligated

to complete or truncated miRNAs were bound by AGO.

We next analyzed if targets found in miRNA chimeras have

sequence complementarities to the ligatedmiRNA.We screened

for perfect (non-G:U) complementarity to miRNA nt 2–7 (seed),

complementarity to miRNA nt 2–7 containing one mismatched

or bulged nucleotide, and complementarity to miRNA nt 2–8

containing two mismatches. Together, these modes were

detected in �80% of interactions and are highly significantly

enriched compared to random controls (Figure 2A).

We analyzed miRNA:target hybridization with RNAhybrid

(Rehmsmeier et al., 2004). The median free energy was lower

(by 3.3 kcal/mol or �2–3 hybridized nt) for miRNA:targets

compared to controls (Figure S2C). Base pairing was as ex-

pected formiRNA (Wee et al., 2012; Khorshid et al., 2013): clearly

preferred in the seed while reduced at positions 9, 10, and 11

(Figure 2B).

As for interactions with perfect seed matches, analysis

of miRNA:targets without detected seed complementarities
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Figure 1. Generation of miRNA:Target Chimeras via Different Types of Ligations in C. elegans

(A) C. elegans RNA labeled with photoreactive nucleoside 4-thiouridines (4sU) is crosslinked to bound proteins in vivo. After homogenization of worms, the lysate

is treatedwith RNase T1. SomemiRNAs are shortened, and others remain complete. Following immunoprecipitation (IP) andwashing of AGO, crosslinked RNA is

phosphorylated by a PNK variant (leaves 30 ends blocked) and treated with T4 RNA ligase, which ligates the 30-hydroxyl end of complete miRNAs to bound RNA

fragments. Crosslinked RNA is recovered and deep sequenced. Computational analysis detects sequence reads of miRNAs and AGO binding sites, along with

chimeric reads containing miRNAs connected to their targets.

(B) Example of a miRNA interaction recovered from chimeric reads. Predicted reconstruction of the miRNA:target duplex. Green, miRNA sequence; blue, target

sequence; red, T-to-C conversion.

(C) Data from the ligation sample contain chimeras with 30 truncated (length of miRNA sequence R 13 nt) and with complete miRNAs. A comparable fraction of

chimeras with truncated miRNAs was also found in a control sample, to which no ligase was added to generate chimeras.

(D) miRNA and target ends involved in the ligations of the control sample are highly enriched in an upstreamG, suggesting that RNase T1 generated the ends used

for this type of ligation.

(E) Truncated miRNAs are ligated by the ligase activity of the lysate during IP.

(F) The majority (89%) of chimera-derived miRNA target sites (mapped to the transcriptome) overlap with AGO binding sites generated from nonchimeric reads.

See also Figure S1.
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revealed direct evidence for crosslinking (T-to-C conversions,

Figure S2D). However, their binding free energy was decreased

less (Figure S2E), and hybridization profiles did not indicate

enriched base pairing within the seed region (Figure S2F).

Since miRNA family members have the same seed, they are

expected to share some of their targets, and indeed, target sites

were ligated to members of the same miRNA family much more

often than expected by chance. Thus, chimeras can capture

multiple endogenous miRNA targeting events at the same target

site (Figure 2C, p < 0.0001).

An increased T-to-C conversion frequency directly upstream

of seed matches was previously reported for AGO PAR-CLIP

data (Hafner et al., 2010; Kishore et al., 2011). Similarly, miRNA:

targets with a perfect or imperfect seed match showed clear

conversion patterns, with the highest number of conversions

at the second position upstream and a strong depletion within

seed matches (Figures 2D and S2G). Interestingly, miRNAs

found in ligation products had a 3-fold lower T-to-C conversion

rate compared to nonligated miRNAs (Figure S2H). This

is because noncrosslinked miRNAs tend to be lost under the

denaturing conditions of protein purification, while ligated, non-

crosslinked miRNAs can pass purification due to their covalent

connection to AGO.

Published Mammalian AGO-CLIP Data Contain Ligated
miRNA:Targets
If, in our C. elegans experiments, ligated miRNA:targets

are generated through a ligation activity naturally present in

the lysate, then existing AGO-CLIP data should also contain

miRNA:targets. Therefore, we searched for miRNA-chimeras

in published AGO-CLIP data sets across several model

systems and CLIP methods, such as HITS-CLIP (high-

throughput sequencing of RNA isolated by crosslinking

immunoprecipitation; Chi et al., 2009) and PAR-CLIP (Photo-

activatable-ribonucleoside-enhanced crosslinking and immu-

noprecipitation; Hafner et al., 2010) (Table 1; Figure S6;

Experimental Procedures). Our pipeline confidently detected

miRNA sequences of 13 nt and longer and mapped targets

as short as 16 nt with an estimated false discovery rate

(FDR) < 5%. This sensitivity was essential for analysis since

AGO-CLIP sequences from published studies were typically

short (16-36 nt).

In total, we recovered�11,000 humanmiRNA:targets,�2,000

mouse miRNA:targets, �500 for Kaposi’s sarcoma-associated

herpesvirus (KSHV) miRNAs, and �300 for Epstein-Barr

virus miRNAs. As expected, most chimeras (>80%) contained

30-truncatedmiRNAs. Numbers ofmiRNA:targets varied strongly
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Figure 2. C. elegans miRNA:Targets (3,600) Derived from Chimeras Reflect Endogenous miRNA Targeting

(A) Target RNAs were analyzed for complementarity to the seed region of their ligated miRNAs. Approximately 80% of interactions possess the tested

complementarities. Shuffled sequences (dinucleotides in target sequences are permuted) served as control. mm, mismatch. Mismatches were broadly

distributed over all types of nucleotides, including G:U.

(B) Hybridization profile summarized over all interactions. The predicted frequency of a miRNA position to be base paired is plotted along the miRNA length.

Duplex structures of miRNA:targets were predicted by RNAhybrid, allowing G:U pairing. Shuffled sequences (dinucleotides in target sequences are permuted)

and shuffled interactions (targets are swapped between miRNAs) served as control.

(C) Target sites derived frommiRNA-chimeras are found ligated to miRNAs of the same family more often than expected by chance (p < 0.0001). Shuffling target

sites between miRNA families served as control.

(D) Local frequency of crosslink-induced T-to-C conversions in target RNAs from interactions with a perfect 2–7 seed match (normalized to local thymidine

frequency). Nucleotides hybridized to the seed of the miRNA are strongly indisposed to crosslink with the protein. See also Figure S2.
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